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ABSTRACT
Conversational Recommender Systems (CRS) have recently drawn

attention due to their capacity of delivering personalized recommen-

dations through multi-turn natural language interactions. In this

paper, we fit into this research line and we introduce a Knowledge-

Aware Sequential Conversational Recommender System (KASCRS)

that exploits transformers and knowledge graph embeddings to pro-

vide users with recommendations in a conversational setting.

In particular, KASCRS is able to predict a suitable recommenda-

tion based on the elements that are mentioned in a conversation

between a user and a CRS. To do this, we design a model that: (i)
encodes each conversation as a sequence of entities that are men-

tioned in the dialogue (i.e., items and properties), and (ii) is trained
on a cloze task, that is to say, it learns to predict the final element

in the sequence - that corresponds to the item to be recommended

- based on the information it has previously seen.

The model has two main hallmarks: first, we exploit Transform-

ers and self-attention to capture the sequential dependencies that

exist among the entities that are mentioned in the training dia-

logues, in a way similar to session-based recommender systems

[25]. Next, we used knowledge graphs (KG) to improve the quality

of the representation of the elements mentioned in each sequence.

Indeed, we exploit knowledge graph embeddings techniques to

pre-train the representation of items and properties, and we fed

the input layer of our architecture with the resulting embeddings.
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In this way, KASCRS integrates both knowledge from the KGs as

well as the dependencies and the co-occurrences emerging from

conversational data, resulting in a more accurate representation of

users and items. Our experiments confirmed this intuition, since

KASCRS overcame several state-of-the-art baselines on two differ-

ent datasets.
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1 INTRODUCTION
Conversational Recommender Systems (CRS) are intelligent sys-

tems designed to support decision-making [11] by interacting with

the users in a multi-turn dialogue [21], and by providing person-

alized recommendations based on their preferences and feedback

[17]. In recent years, CRSs have gained significant attention, mainly

due to the progress in the Natural Language Processing (NLP) field

and to their potential in enhancing user satisfaction, trust, and

engagement [16]. While early approaches for CRSs relied on manu-

ally curated knowledge [6–8, 20, 27, 35] and provided users with

a static dialogue based on a relatively fixed sequence of questions,

recent attempts focused on developing end-to-end approaches that
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Figure 1: Two different toy conversations run by a CRS. In the first case, the recommendation only relies on dependencies and
co-occurrences learned from training dialogues. In the latter, the information coming from a KG (see (c) as a toy example) is
also exploited.

are trained on datasets of previously annotated dialogues, such as

ReDial [24]. Generally speaking, most of the end-to-end CRSs are

composed by two main modules: a conversationmodule, whose goal

is to maintain the dialogue with the user, by making the right ques-

tions and generating appropriate responses, and a recommendation
module, whose goal is to collect and exploit all the information

that is exchanged in the dialogue in order to provide users with a

suggestion. In this paper, we focus on the recommendation module
of a CRS, and we address the problem of extracting and encoding

preferences and needs based on the sequence of natural language

utterances that a user and a CRS exchange in a dialogue (see Figure

1).

The first attempt in this direction was proposed in [24], where

the authors addressed this challenge by modeling each user based

on the items explicitly mentioned in the dialogue. Later, the research

extended this approach by also incorporating contextual words [29]

and external knowledge from knowledge graphs (KG) [4, 28], as in

[49]. This resulted in better recommendation performance. Another

approach to user profiling, introduced in [9], modeled each user

by exploiting items (i.e., movies) and entities (i.e., directors and
genres) mentioned in the dialogue while employing a KG to build

a connection between them. While being relatively accurate, all

these methods share the common issue of treating the elements

mentioned in the dialogue as a set, by overlooking the sequential
dependencies that exist among the entities that appear in the dia-

logue (i.e., the co-occurrences and the order in which they were

expressed).

In order to better model such dependencies, methods such as the

transformer-based sequential conversational recommender (TSCR)

have been introduced [51]. TSCR established a new benchmark

for CRS performance by modeling sequential dependencies among

entities that appear in the dialogues. This model encodes the user

profile as a sequence of entities, as in [9], but it also captures the

positional information through positional encoding. While the use

of positional embeddings currently represents a promising strategy

to encode user preferences starting from a dialogue between a user

and a CRSs, methods such as TSCR learn what to recommend by

just exploiting the sequential dependencies and co-occurrences

that appear in the training dialogues. In other therms, these models

are trained on sequences of entities and their learning is solely

dependent on the sequential patterns and co-occurrences of enti-

ties observed during training. As a consequence, they lack of the

ability to generate recommendations by also relying on exogenous

information coming from external knowledge sources, that can be

useful to provide users with more diverse and accurate suggestions.

As an example, in a movie CRS scenario (see Figure 1-a), if a

user has expressed a preference for The Godfather and for Al Pacino
in their dialogue turns, other movies that appear in the training

dialogues together with both the entities (i.e., movies recommended

to users who liked The Godfather and/or Al Pacino) will be candi-
date recommendations. Indeed, in our toy example, we assume that

Goodfellas typically co-occurs in the sequences together with both

The Godfather and Al Pacino, so it is returned as a recommendation.

Unfortunately, such an approach does not exploit the information

embedded in external structured knowledge sources such as KGs,

which could enhance the accuracy of the model by exploiting the

semantic relationships between the entities. Indeed, a CRS that

also exploits a KG (see Figure 1-b) would return a different recom-

mendation. In this case, by levering the information encoded in

a KG (see Figure 1-c), a different movie, i.e., Donnie Brasco, could
be recommended to the same user since it shares some semantic

relationships with the preferences of the user, such as having the

same genre of The Godfather (Crime) and being acted by the same

actors the user likes (i.e., Al Pacino). In a nutshell, thanks to the

exogenous information encoded in a KGs it is possible to provide

CRSs with more knowledge that can be useful to generate more ac-

curate recommendations, especially when training data are scarce

and just a few co-occurrences may be exploited.

To address this limitation and to fully exploit the potential of

KGs in CRS, we propose a Knowledge-Aware Sequential Conversa-

tional Recommender System (KASCRS), which leverages Knowl-

edge Graph Embeddings (KGE) to pre-train the representation of

items and properties in a CRS. To this end, we first learn a KGE

for all the entities (i.e., items and properties) in the dataset. Next,

these pre-trained embeddings are fed into a deep architecture based

on transformers that predicts a suitable recommendation. This al-

lows KASCRS to not only capture sequential dependencies between
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entities via self-attention, but also to incorporate the semantic re-

lationships between them based on the information available in

the KG. As demonstrated by experimental evaluation, the combi-

nation of positional embeddings and exogenous knowledge based

on pre-trained KGE significantly improves the predictive accuracy

of a transformer-based sequential CRS, whose performance over-

came those of several state-of-the-art baselines for conversational

recommendations in two different experimental settings. As a final

remark, as we previously stated, it is important to point out again

that this work only focuses on the recommendation module of a

CRS. This is line with other state-of-the-art work in the area, such

as TSCR [51]. The design and the development of the conversation
module of the architecture is left as a future work. To sum up, the

contributions of this paper are the following:

(1) We introduce KASCRS, an approach to incorporate informa-

tion encoded in KGs into a transformer-based sequential CRS,

and we compared our approach to several state-of-the-art

methods for CRSs.

(2) We carried out a sensitivity analysis by comparing the perfor-

mance of the approach on varying of the graph embedding

technique and on varying of different hyper-parameters;

(3) We guarantee reproducibility by releasing our source code

and all the scripts to run the experiments.

The remainder of this paper is organized as follows: Section 2 pro-

vides an overview of the state of the art in CRS and KGE; Section

3 details the data processing steps and outlines the problem we

aim to address; Section 4 focuses on the knowledge graph embed-

ding and Section 5 describes the architecture of of the proposed

knowledge-aware sequential CRS. Finally, Section 6 presents the

experimental results.

2 RELATEDWORKS
Conversational Recommender Systems. CRSs have emerged as

a popular research topic in recent years, aiming to provide high-

quality recommendations to users through natural language con-

versations [24, 26]. In the literature, two primary categories of CRSs

have been investigated: attribute-based CRSs [14] and end-to-end

CRSs [24].

Generally speaking, attribute-based CRSs prioritize capturing

user preferences and generating precise recommendations in a

limited number of turns [10, 40, 50]. These systems interact with

users through pre-defined actions and generate responses using

templates. Recent works have employed multi-armed bandit [10]

or reinforcement learning algorithms [23] to enhance user interac-

tions. However, these models require a knowledge engineering step,

which restricts the flexibility and the adaptivity of the proposed

solutions [15, 22]. On the other side, end-to-end CRSs typically rely

on large amount of training dialogues and exploit deep neural net-

works. The distinctive trait of these approaches lies in the quality

of the dialogues and the natural language responses they can gener-

ate. Indeed, these systems are more challenging to develop but can

provide a more engaging and personalized user experience [21].

Within the context of end-to-end CRSs based on neural net-

works, the issue of modeling user preferences has been addressed

in different ways, depending on the architecture underpinning the

recommendation module. As an example, some state-of-the-art-

approaches exploited pre-trained language models (PLM) for this

task. In particular, in [48] the authors introduce some implementa-

tions of CRSs based on GPT-2 [34] and based on BERT [12]. In these

models, the user profile is obtained by feeding the PLM will all the
tokens that appear in the conversation, and the model is trained to

predict the final element (i.e., the item to be recommended). In par-

ticular, as for GPT-2, the recommendations are generated by using

the representation of the final token while representation of the

"[CLS]" token is used for BERT. While being relatively simple, these

approaches provide good predictive accuracy, so we considered

these techniques as baselines in our experiments. Next, more ad-

vanced strategies to handle conversations in CRS recently emerged.

In ReDial [24], the authors employ an auto-encoder recommenda-

tion module pre-trained on MovieLens [18]. This recommendation

module provides suggestions based on the items mentioned in the

dialogue only. Next, several approaches exploited KGs to gener-

ate recommendations in CRSs. As an example, in KGSF [49] the

authors employ a KG-enhanced recommendation module that con-

siders both items and contextual words mentioned in the dialogues.

Moreover, this approach also exploits embeddings learned from

DBpedia [2] and ConceptNet [37] to inject exogenous knowledge

related to items and contextual words, respectively. Next, a dif-

ferent perspective is presented in KBRD [9]. In this work, each

user is modeled using entities (items and properties) appearing in

the dialogue. Next, items are linked to the corresponding URI in

DBpedia KG, while properties (i.e., actors and directors) are linked

to the corresponding URI in the same KG. However, this method,

along with prior approaches, fails to consider the sequential order

in which user preferences are elicited, differing from our proposed

method. To sum up, in all these approaches each user is thus repre-

sented using the set of entities mentioned in the dialogue, and this

representation is enriched by structural and relational information

learned from the KG. Recently, the use of positional information

emerged as a promising strategy to encode user preferences. Indeed,

as previously stated, transformer-based sequential conversational

recommenders exploited this intuition and have shown state-of-

the-art performance in this task. In TSCR [51], the authors propose

a recommendation module inspired by BERT4Rec [39]. In this work,

users are modeled by extracting entities, which encompass items

and properties (i.e., directors and genres), mentioned in natural

language dialogues. Then, these entities are then modeled as a se-
quence. In this way, they explicitly consider order which entities are

mentioned in the dialogue. As shown in [51], the use of positional

embeddings to capture sequential dependencies between entities

led TSCR to obtain the best results w.r.t. other baselines in the area

of CRS.

To sum up, the overview of the literature showed that state-of-

the-art approaches fit into two different research lines: on the one

side, we have methods that exploit exogenous knowledge sources

to enrich the representation of the entities mentioned in the dia-

logue. On the other, we have techniques such as TSCR that leverage

the sequential nature of the dialogues and exploit this informa-

tion to improve the predictive accuracy. While both the research

lines obtained promising results, the combined exploitation of both

the intuitions (i.e., use of knowledge graphs and use of positional

information) is poorly investigated. Accordingly, we introduce a
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knowledge-aware sequential conversational recommendation mod-

ule that generates recommendations based on entities mentioned

in the dialogue. Unlike previous methods, our model effectively

captures both sequential dependencies and relational/structural

information from the conversational dataset and KG, respectively,

providing users with a more comprehensive and accurate recom-

mendations.

Knowledge Graph Embeddings. Graph embedding techniques

aim at representing entities and relations holding in a graph as dense
vectors (or embeddings), while preserving properties and structures

of the original graph. The first proposed models, such as TransE [5]

and TransH [46], are referred to as geometrical models [44]. While

being very simple, these models obtained very good performance in

several tasks, including recommendation [31, 32, 38]. More recently,

these models evolved by considering Large Language Models [3]

and by exploiting Graph Neural Networks and Graph Convolu-

tional Networks (GCNs) [47]. As for the latter, the key idea of these

models is to learn node embeddings by propagating and aggre-

gating neighbors-derived information. CompGCN [42] is a GCN

model that performs a composition operation over each edge in the

neighborhood of a target node, and then applies convolution on the

composed embeddings. Based on the very competitive performance

obtained by GCNs in recommendation tasks [33, 38], we exploited

GCNs to learn our KGE. However, with respect to most of the litera-

ture in the area of KGE for recommender systems, the novelty of our

work lies in the use of KGE to feed a transformer-based sequential

CRS. As we previously stated, this is a poorly investigated research

line.

3 PRELIMINARIES
Knowledge Graph. All the information necessary to learn our

pre-trained representation of items and properties is encoded in a

bipartite knowledge graph KG. In this graph, nodes representing

items and descriptive properties are connected by labeled edges,

reflecting the links between them. An example of KG is provided

in Figure 1-c.

Formally, let I = {𝑖1, 𝑖2, . . . , 𝑖 | I | }, be the set of items and F =

{𝑓1, 𝑓2, . . . , 𝑓 | F | } be the set of properties such as actors, directors

and genres. KG = ⟨N , E⟩, where N = I ∪ F . Next, let R be the

set of the relations that exist in the graph (such as starring, directed
by, etc.). If item 𝑖 ∈ I is linked to property 𝑓 ∈ F through relation

𝑟 ∈ R, then (𝑖, 𝑟 , 𝑓 ) ∈ E, which means that a direct edge connecting

𝑖 to 𝑓 , and labeled with 𝑟 , is created.

Conversational Data. LetU = {𝑢1, 𝑢2, . . . , 𝑢 |U | } be a set of users.
Given a dataset of dialogues D describing conversations between a

user and a CRS, for each 𝑑 ∈ D we extract the sequence of entities

mentioned by the user in the dialogue. Formally, each dialogue is

encoded as a sequence entity tokens S𝑢,𝑑 = [𝑒𝑑
1
, 𝑒𝑑
2
, . . . , 𝑒𝑑

𝑘
] where

𝑒𝑑
𝑖
∈ {I ∪ F }. S𝑢,𝑑 represents the preferences of user 𝑢 extracted

from 𝑑 . The extraction phase can employ any entity recognition

and entity linking techniques, and follows the setup used in [9, 49].

The whole process is described in Figure 2.

Description of the Problem. Given a knowledge graph KG, we

first employ KGE techniques to learn an embedding 𝑉 (𝑒) for each
entity 𝑒 ∈ {I ∪ F }. Next, let S𝑢,𝑑 be a sequence of entities repre-

senting the preferences of user 𝑢 extracted from dialogue 𝑑 . The

objective of the model is to predict the probability that a user would

like the item 𝑒 𝑗 .

Formally, themodel learns a functionZ such that𝑦 𝑗 = Z(S𝑢,𝑑 , 𝑒 𝑗 |𝑉 , 𝜃 )
where 𝜃 are the model’s learnable parameters,𝑉 is a mapping func-

tion that links each entity to its corresponding KGE, and 𝑒 𝑗 is the

candidate item. This prediction is calculated for all the candidate

items in 𝐼 , the scores 𝑦 𝑗 are ranked in descending order and the

top-1 item is returned as conversational recommendation.

4 KNOWLEDGE GRAPH EMBEDDING
LEARNING

Starting from the bipartite knowledge graph KG, we first learn
the graph embeddings for all the nodes in the KG. As previously

stated, we learn KGE by using the Graph Convolutional Network

[47] CompGCN [42]. The general idea of this model is to aggregate

the information coming from the neighborhood of a specific node

to learn its representation, and this is repeated for each node up to a

specific 𝑙-th layer, where 𝑙 is the number of layers of the GCN. The

main advantage of this model, with respect to other GCNs, is that it

is able to distinguish different relations and treat them in different

ways, aiming at learning more precise embeddings. Formally, given

a node 𝑒 , we refer to its vector-space representation with 𝑉 (𝑒);
then, the embedding is updated as follows:

𝑉 (𝑒)𝑘+1 =
∑︁

(𝑓 ,𝑟 ) ∈𝑁 (𝑒 )
𝑊 𝑘

𝜆 (𝑟 )Φ
(
𝑉 (𝑓 )𝑘 ,𝑉 (𝑟 )𝑘

)
(1)

where 𝑉 (𝑒)𝑘+1 is the embedding of the node 𝑒 learned at the 𝑘 + 1-

th layer, 𝑁 (𝑒) is the set of neighbors 𝑒 of the node 𝑓 linked via the

relation 𝑟 ,𝑊 𝑘
𝜆 (𝑟 ) is the transformation matrix of the relation 𝑟 , used

to project the relation embedding to the same space of node embed-

dings and use them in the next layer (it also considers the direction

of the edge by means of the function 𝜆 (𝑟 )), 𝑉 (𝑓 )𝑘 and 𝑉 (𝑟 )𝑘 are

the embeddings related to the node 𝑓 and the relation 𝑟 learned

at the previous layer, respectively, and finally Φ
(
𝑉 (𝑓 )𝑘 ,𝑉 (𝑟 )𝑘

)
is

the composition function aiming at combining the embeddings. As

in TransE [5], we used the subtraction as composition function.

For more details on the method, we suggest to refer to the origi-

nal paper [42]. While our choice is based on the very competitive

performance obtained by GCNs in recommendation [33, 38], in

our experimental setting we also compared the embeddings learnt

with CompGCN with those obtained with other KGE strategies.

Moreover, we also evaluated the effectiveness of the embeddings

learnt at different layers. More details will be provided next.

5 KNOWLEDGE-AWARE SEQUENTIAL
CONVERSATIONAL RECOMMENDER
SYSTEM

The design and the implementation of our transformer-based se-

quential CRS follows the description presented in Section 3. In the

following, we present our architecture and we describe training

and inference of the model.
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Symbol Definition Description
KG Knowledge Graph Source of external knowledge that is leveraged to obtain pre-trained

embeddings

N Nodes of KG Nodes are heterogeneous, including items and descriptive properties

I Set of items In the movies domain, it includes only movies

F Set of descriptive properties In the movies domain, it includes actors, directors, and genres

R Set of items and properties

edge label

In the movies domain, it includes the edges "starring" for actors, "di-

rected by" for directors, and "categorized" for genres

U Set of users User that express preferences and require a recommendation

D Set of dialogues Dataset of conversations. It is a set of conversations between a user

and a recommender

S Sequence of user preferences Entities (items and properties) properties mentioned by the user in the

dialog

V(∫) Embedding operations The linking of the element 𝑠 of the sequence with its KGE

Table 1: Notations and definitions

Figure 2: Processing conversational data to extract sequences of entities that represent user profile.

5.1 Description of the Architecture
As shown in Figure 3, the input of the model is represented by

the entity tokens that are extracted from a dialogue. As previously

stated, they represent the preferences of the user. Next, the input

is processed through the KG embedding process we previously

described and then passed through a Transformer architecture

composed of an embedding layer, 𝑁 self-attention layers, and an

output layer. In the following, we describe the structure of the

architecture.

Embedding Layer. The embedding layer is where our model sig-

nificantly differs from other transformer-based recommendation

models, such as TSCR [51]. Indeed, this layer uses the KGEs that are

previously learned to provide the Transformer with the exogenous

knowledge regarding the semantic connections between items and

properties encoded in the KG. Moreover, in order to also encode

information about the order in which the entities are mentioned

in the original sequence, we employ positional embeddings. These
embeddings are vector representations that encode the relative or

absolute position of an element. This ensures that entities in the

same position across different sequences share the same positional

encoding. Formally, given a sequence S of entities 𝑒𝑘 , we encode
each entity at position 𝑘 as the sum of two embeddings: the frozen

pre-trained KGE V(ek) and the positional embedding pk:

i0k = V(ek) + pk (2)

Next, we stack all entity representations to obtain the representa-

tion of the sequence. Where needed, we pad the sequence to the

maximum sequence length to obtain the matrix S0. Next, at each
self-attention layer 𝑛, we calculate an updated matrix Sn. It it worth
noting that in this process the KGEs remain frozen and are not

modified during model training, ensuring that the model relies on

the original graph-based representations.

Self-Attention Layer. A self-attention layer is composed of two

distinctive sub-layers, namely a multi-head self-attention sub-layer

and a Position-wise Feed-Forward Network (PFFN). The incorpo-

ration of these layers, as pointed out in [43], empowers the model

with the capability to effectively capture inter-dependencies within
sequences.

En+1 = MultiHead(PFFN(En)) (3)

The PFFN is a network made up of a series of parallel and identical

Feed-Forward Networks (FFN) with GELU activation. Each FFN

is applied to each element in the sequence and aims to learn a

representation of the element:

PFFN(En) = [FFN(en1 )
𝑇
; . . . ; FFN(enk)

𝑇 ]𝑇 (4)

Finally, to ensure generality, mitigate overfitting, and speed up

the training process, the output of each sub-layer (i.e., PFFN or

multi-head) is normalized and subjected to dropout:

LayerNorm(En + Dropout(sublayer(En))) (5)

Ouput Layer. After 𝑁 self-attention layers, we obtain the final

output matrix EN. Assuming that the masked element is in position

𝑘 + 1, we use the eNk+1 to predict the item 𝑒𝑘+1. In order to achieve
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Figure 3: Each entity in a sequence of entities is encoded as the sum of the correspondent frozen KGE and positional embedding.
To make a recommendation, a sequence with the special "[MASK]" token placed at the end is provided to the model, that can
predict the item that more likely occupied the masked position.
this, we project eNk+1 in the entities space with a two-layer feed-

forward network with GELU activation in between:

ok+1 = GELU(eNk+1W
T + bP)ET + bO (6)

WhereW ∈ R |𝐼∪𝐹 |×𝑑 and ET ∈ R |𝐼∪𝐹 |× |𝐼∪𝐹 | is a learnable projec-
tion matrix, and bP and bO are bias terms.

5.2 Model Training and Inference
The model is trained on sequences of entities extracted from dia-

logues between a user and a CRS. Training is carried out through

Masked Language Modeling [12], also referred to as the cloze task
[41]. Generally speaking, this task involves masking a proportion of

items within each sequence using a special token (e.g., "[MASK]"),

and the model is tasked with predicting the correct items. During

training of KASCRS, we limit masking to only item tokens. In this

way, we allow the model focus the learning on the recommendation

of relevant items. This follows the learning strategy implemented

in [51]. To ensure that only items are recommended, the score

of non-item entities is set to −∞. Finally, we define the loss for

each masked sequence as the negative log-likelihood of the masked

targets:

L =
1

|S (mask) |

∑︁
𝑒𝑚∈S (mask)

− log 𝑃 (𝑒𝑚 = 𝑒∗𝑚 |S′) (7)

where S′
is the masked version of the sequence S, S (𝑚𝑎𝑠𝑘 )

is the

set of masked items in S′
. 𝑒𝑚 and 𝑒∗𝑚 are the masked item and

the target item, respectively. This loss function helps the model to

maximize the ground truth items probabilities while simultaneously

minimizing the competing items probabilities.

During testing, following the same protocol proposed in [51],

for each target item (i.e., each item mentioned by the recommender,

shown in blue in Fig. 2) a special testing sequence is constructed.

This testing sequence consists of the original sequence of entities ex-

tracted from the messages of user (shown in red in Fig. 2) truncated

of the target item. Subsequently, the last entity in the sequence

(i.e., the target item) is masked. The resulting sequence, having the

"[MASK]" token placed at the end, is then provided to the model,

that predicts the item that more likely occupied the masked position

of the "[MASK]" token. As shown in Fig. 3, this is done by applying

a LogSoftmax to the output. This finally generates log probabilities

for each item, indicating the model’s likelihood of recommending

it. Items are finally ranked based on this score, and the top-1 is

returned as recommendation.

6 EXPERIMENTAL EVALUATION
To assess the effectiveness of our model, we evaluate the results

w.r.t. two state-of-the-art datasets in the area of CRS. In particular,

our experiments aimed to answer the following Research Questions

(RQ):

- RQ1 - Comparison to State of the Art: How does our approach

perform w.r.t. state-of-the-art CRS baselines?

- RQ2 - Ablation Tests: How do different components of the ar-

chitecture (positional embeddings and KGE) and different types of

properties (i.e., actors, directors, genres) contribute to the overall

performance?

- RQ3 - Sensitivity Analysis: What is the relative impact of mask

probability and embedding dimensionality on the performance of

KASCRS, and how do different KGE techniques impact the predic-

tive accuracy?
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6.1 Experimental Setting
Datasets. To conduct our experiments, we employ the ReDial

dataset [24] and INSPIRED [19]. The ReDial corpus encompasses

11,348 dialogues, while INSPIRED comprises 1,001 dialogues. As

stated in Section 3, starting from the dialogues in the datasets, we

extract sequences of user preferences made up of items and prop-

erties. To ensure a fair comparison with the baseline models, we

utilize the pre-processed dataset provided by CRSLab [48].

To construct the knowledge graph, different strategies were adopted.

As for the ReDial dataset, actors and directors were extracted from

DBpedia [2] and the genre properties were obtained by matching

the DBpedia name with the MovieLens dataset [18]. Conversely,

the properties for INSPIRED have been extracted from the metadata

files released with the dataset
1
. Information about the characteris-

tics of the knowledge graphs and about the length of the sequences

for each datasets are summarized in Table 2.

Dataset ReDial INSPIRED
# Movies 6071 16733

# Actors 7164 32195

# Genres 21 27

# Directors 2807 9962

Avg. properties per movie 6.85 7.90

Avg. sequence length 7.24 12.88

Max. sequence length 43 47

Table 2: Comparison of ReDial and INSPIRED dataset statis-
tics.

Protocol and Evaluation Metrics. For both the datasets, we ex-

ploited the original 8:1:1 splits for both datasets. To evaluate the

effectiveness of our approach, we employ Recall@k. As previously

stated, to calculate the metric we ask our model to predict the

𝑘 + 1th entity (i.e., the recommended item) based on the previous 𝑘

entities that occur in the sequence. In particular, Recall@k assesses

whether the ground truth item (i.e., the actual recommendation

proposed at the end of the dialogue), occurs in the top-k items

returned by our recommender system. As ground truth, we used

the items mentioned in the dialogue by the recommender.

To assess the significance in terms of Recall@k among the dif-

ferent configurations, we used McNemar test. The test is designed

for paired binary data, which is the type of data we have because

there is only one relevant item per test sequence. The test specif-

ically looks for cases where one model succeeds while the other

fails. If we reject the null hypothesis, it means that the models

have different rates of success when trained on the same data [13].

Implementation Details. KASCRS is based on Pytorch. We run

our experiments using an NVIDIA Tesla T4 GPU. Source code of

the model is available in our repository
2
, together with the data

needed to reproduce the results of the experiments. As for For KGE

techniques, we used the implementation of CompGCN available in

Pykeen [1].

Model Parameters.Next, as regarding the architecture of KASCRS,
the best results have been achieved with 2 layers and 2 attention

heads. The maximum sequence length for input data is set at 50 so

1
All the source graphs that can be used to obtain KGE for both the datasets are released

in our GitHub repository, which is mentioned next.

2
https://github.com/petruzzellialessandro/UMAP2024

that no test sequence is cut in both datasets. The proposed model is

trained using the stochastic gradient descent (SGD) optimizer with a

batch size of 256, and hyperparameters specifically tailored to each

dataset. For the INSPIRED dataset, the optimal parameters were

found to be a learning rate of 5𝑒 − 4 over 50 epochs, weight decay

of 2, and dropout probability of 0.3. In contrast, the ReDial dataset

required a higher learning rate of 5𝑒 − 3 over 100 epochs, weight

decay of 5, and dropout probability of 0.5. This difference in hyper-

parameters is attributed to the distinct item distribution patterns

between the two datasets. The INSPIRED dataset exhibits a more

balanced item distribution, while ReDial features amore imbalanced

distribution. This imbalance necessitates stronger regularization

techniques, such as higher weight decay and dropout, to prevent

the model from overfitting to the prevalent items.

Sensitivity Analysis. To investigate the influence of various KGE

algorithms on the overall performance of KASCRS, we compared

CompGCN to three graph embedding techniques: (1) RGCN [36]: A

relational graph convolutional network that explicitly models the

relationships between nodes in a graph. We tested both 1-hop and 2-

hop variants; (2) TransE [5]: A knowledge graph embedding method

that represents entities and relations as points in a vector space.

TransE seeks to minimize the distance between the representations

of an entity and its corresponding relations; (3) TransH [46]: An

extension of TransE to hyperbolic space. This enables TransH to

model long-range dependencies between entities. Moreover, we

also assessed the effectiveness of the model on varying of the graph

embedding size (16, 32, 64, 128) as well as on different values of mask

probability. Results are discussed in Section 6.2.

Baselines. To evaluate the effectiveness of our approach, we com-

pare it to several state-of-the-art baselines, such as:

• GPT-2 [34]: An auto-regressive pre-trained language model

(PLM) that processes the utterances in a conversation as a

single input sequence. The representation of the final token

is used for recommendation generation;

• BERT [12]: PLM pre-trained using the MLM task on a large,

general-purpose corpus. For recommendation generation,

we extract the representation of the "[CLS]" token;

• ReDial [24]: An auto-encoder-based model based on HRED,

introduced alongside the ReDial dataset;

• KBRD [9]: A Knowledge-based CRS model that leverages

DBpedia to enhance items representation;

• KGSF [49]: A model that integrates DBpedia and ConceptNet

[37] to enhance items and words representation;

• UniCRS [45]: Amodel that uses knowledge-enhanced prompt

learning to train a generative model that is fed with pre-

trained entity representations and task-specific prompts;

• TSCR [51]: Transformer-based CRS without external knowl-

edge.

The implementations for GPT-2, BERT, ReDial, KBRD, and KGSF

baselines are available in the CRSLab Toolkit
3
, while UniCRS im-

plementation is available in the repository provided in the paper
4
.

For TSCR, since the authors did not provide any implementation,

we developed the model based on the description in the paper.

3
https://github.com/RUCAIBox/CRSLab

4
https://github.com/RUCAIBox/UniCRS

https://github.com/petruzzellialessandro/UMAP2024
https://github.com/RUCAIBox/CRSLab
https://github.com/RUCAIBox/UniCRS
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Dataset ReDial INSPIRED
Model/Recall Recall@1 Recall@10 Recall@50 Recall@1 Recall@10 Recall@50
GPT-2 0.023 0.147 0.327 0.034 0.112 0.278

BERT 0.030 0.156 0.357 0.044 0.179 0.328

ReDial 0.023 0.129 0.287 0.003 0.117 0.285

KBRD 0.030 0.164 0.338 0.058 0.146 0.207

KGSF 0.039 0.183 0.378 0.058 0.165 0.256

UniCRS 0.051 0.224 0.428 0.094 0.250 0.410

TSCR 0.068 0.299 0.398 0.132 0.391 0.467

KASCRS 0.121* 0.409* 0.759* 0.161 0.448 0.648*

Table 3: Recommendation performances of our model and baselines . (∗) indicates a significant improvement upon the best
baseline in McNemar test with p-value < 0.01. Best performance are in bold.

6.2 Discussion of the Results
RQ1: Comparison to State of the Art. In order to answer RQ1,

we compared our approach to other CRS baselines. The results are

provided in Table 3. As shown in the table, KASCRS outfperforms

all the baselines on both the datasets and on all the metrics we

considered. Gaps with respect to the best-performing baseline (i.e.,
TSCR) are statistically significant on all the metrics on ReDial, and

on Recall@50 on INSPIRED.

As regards the other techniques, the results show that the intro-

duction of external knowledge, as discussed in Section 2, signifi-

cantly improves the performance. This is confirmed by the impres-

sive gain achieved by KBRD, KGSF, and UniCRS with respect to

the models that don’t leverage the exogenous knowledge such as

ReDial, BERT and GPT-2. Indeed, UniCRS outperformed BERT on

the two datasets by 70% and 113%, respectively in terms of Recall@1.

With respect to these methods, KASCRS obtained a significant im-

provement. As an example, compared to UniCRS (the best baseline

that leverages external knowledge), the improvement on Recall@1

is over 135% on both the datasets.

As previously stated, the overall best-performing baseline on all

the datasets is TSCR. This is in line with the results already shown

in literature, and confirms that the introduction of transformer

architecture in CRSs brought an additional improvement in the

modeling of the preferences as a sequence. However, by comparing

our results to TSCR we obtain a significant improvement of 77%

on the ReDial dataset and 21% on the INSPIRED one. These results

definitely confirm the intuitions behind this work, since we showed

that the combined use of Transformers and Knowledge Graphs

allows to better model sequences that encode preferences and needs

of the users in a conversational recommendation setting.

RQ2: Ablation Tests. To answer RQ2, we carried out two different
ablation tests. The first ablation study investigated the impact of the

two main components of the architecture, that is to say, pre-trained

embeddings based on knowledge graphs and the use of positional

embeddings in the Transformer architecture described in Section 5.

As shown in in Table 4, the results validate our initial hypothesis,

demonstrating that models that do not exploit KGE consistently

perform worse than our configuration. This finding is particularly

evident in the INSPIRED dataset, where all evaluation metrics are

impacted by the absence of KGE. Similarly, in order to assess the

contribution of sequential modeling, we conducted experiments

by removing positional embeddings (POS) that are summed to

the KGE, as depicted in Figure 3. The results on both datasets

suggest that positional embeddings play a crucial role in capturing

sequential dependencies between entities and relations. Specifically,

the removal of POS led to a noticeable drop in performance across

all metrics. To sum up, this test confirmed the intuitions and the

design choices behind this work, since we showed that both the

combined use of positional embeddings and pre-trained knowledge

graph embeddings is fundamental to better encode user preferences

in a conversational recommendation setting.

Next, in the second test we focused our attention on the char-

acteristics of the KG. In particular, we compared the performance

obtained on varying of different combinations of the properties

available. Given that three type of properties are included in our KG

(i.e., actors, directors and genres), we carried out seven tests, one

for each subset of properties. By referring to the toy KG presented

in Fig. 1-c, each configuration is obtained by learning the KGE by

maintaining just the edges labeled with a particular property, and by

dropping all the others. As for the pre-processing of the sequences,

in each test we maintained in the sequence only the properties that

belong to the subset considered in the specific experiment. As an

example, by referring to Figure 2, when the ablation test based on

the Directors configuration is run, the property Al Pacino was ex-
cluded from the sequence, while Quentin Tarantino was maintained.

All the tests were conducted on the best configuration of the model

optimized per dataset, as previously described.

Dataset ReDial INSPIRED
Model/Recall Recall@1 Recall@10 Recall@50 Recall@1 Recall@10 Recall@50
KASCRS 0.121 0.409 0.759 0.161 0.448 0.648
w/o KGE 0.117 0.409 0.757 0.148 0.396 0.546

w/o POS 0.109 0.402 0.708 0.144 0.319 0.416

Table 4: Results for RQ2. Recall@k Score w/o Knowledge
Graph Embedding and w/o Positional Embedding

As shown in Table 5, these test confirmed the effectiveness of our

choices, since the exploitation of all the properties led to the best

results on both the datasets. As regards the behavior of the single

properties, "Actors" provides the best performance, in particular

in terms of Recall@1. This remarkable outcome can be attributed

to the characteristics and the topology of the knowledge graph.

Indeed, as shown in Table 2, the number of "Actors" properties is

the highest one, so it is likely that this group of properties may be

more useful and discriminant to better model users preferences.

However, even if the results obtained by "Directors" and "Genres"

alone are lower, the results confirmed that their combination with

the other properties available in the graph leads to the best results.

This further confirms the validity of our approach, supporting the

idea of exploiting KGs to encode exogenous knowledge about items

and properties.

RQ3: Sensitivity Analysis.
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(a) Different embeddings size on ReDial (b) Different embeddings size on INSPIRED

(c) Different mask probability on ReDial (d) Different mask probability on INSPIRED

Figure 4: Results for RQ3. Recall@k Score of our sensitivity analysis

Dataset ReDial INSPIRED
Properties Recall@1 Recall@10 Recall@50 Recall@1 Recall@10 Recall@50
Actors + Directors + Genres (OUR) 0.121 0.409 0.759 0.161 0.448 0.648

Actors 0.117 0.403 0.751 0.159 0.392 0.652
Directors 0.094 0.403 0.750 0.116 0.400 0.652
Genres 0.104 0.403 0.754 0.116 0.427 0.638

Actors + Directors 0.121 0.406 0.754 0.159 0.402 0.644

Actors + Genres 0.117 0.408 0.754 0.159 0.420 0.646

Directors + Genres 0.114 0.407 0.754 0.108 0.427 0.640

Table 5: Results for RQ2. Recall@k Score for different property combinations

Dataset ReDial INSPIRED
KGE algorithm/Recall Recall@1 Recall@10 Recall@50 Recall@1 Recall@10 Recall@50
CompGCN - 2 layers (OUR) 0.121 0.409 0.759 0.161 0.448 0.648

CompGCN - 1 layer 0.121 0.400 0.746 0.159 0.420 0.648

RGCN 2 layers 0.116 0.408 0.727 0.159 0.386 0.646

RGCN 1 layer 0.104 0.403 0.714 0.158 0.420 0.652
TransH 0.106 0.403 0.717 0.159 0.420 0.644

TransE 0.113 0.405 0.747 0.159 0.420 0.644

Table 6: Results for RQ3. Recall@k Score of KASCRS with different KGE algorithms

Finally, we carried out a sensitivity analysis to investigate the

influence of various and KGE algorithms on the overall performance

of KASCRS. This is a fundamental analysis, aiming at showing that

CompGCN is the technique able to better catch the characteristics

of our KG. As shown in in Table 6, the results confirmed our choice

since the best results were achieved using CompGCN with 2-hop

embeddings. Similar results were achieved using the same algorithm

with 1-hop embedding. This indicates that CompGCN is the most

appropriate technique for this task.

Moreover, we also conducted a sensitivity analysis on two hyper-

parameters of the overall architecture, such as the size of the embed-

dings and mask probability. To assess the impact of embedding size,

we trained CompGCNwith 2 layers using embedding of sizes 16, 32,

64, and 128. Figure 4 shows the trends of the performance on both

datasets for different embedding sizes. To ensure the readability

of results, we plot only Recall@1 and Recall@10, since Recall@50

follows the same trend. The figures 4a and 4b demonstrate that

the two models achieve their best performances at different em-

bedding sizes on the ReDial and INSPIRED datasets, respectively.

This behavior can be attributed to the characteristics of the under-

lying knowledge graphs. As shown in Table 2, the ReDial dataset

has fewer entities. This suggests that a smaller embedding size is

sufficient to capture the relationships between them and to encode

user preferences in a more effective way. Conversely, the use of a
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larger embedding size probably leads to noisy representations and

lower overall performance. In contrast, the INSPIRED dataset has

more entities, and this makes necessary the adoption of a larger

embedding size to adequately represent the complex relationships

between the elements in the KG. This is demonstrated by the supe-

rior performance of CompGCN on the INSPIRED dataset when the

embedding size is set to 64.

Our experiments also revealed a difference in the optimal mask

probability for achieving peak performance across the ReDial and

INSPIRED datasets. While ReDial exhibited its best results with a

mask probability of 0.6, INSPIRED achieved its peak performance

at 0.2. This difference can be attributed to the distinct item dis-

tributions within each dataset. ReDial is characterized by shorter

sequences and a tendency to present the same items repeatedly,

thus exhibiting a strong popularity bias. To counteract this bias and

encourage the model to learn representations of diverse items, a

higher mask probability, such as 0.6, is the optimal choice. In this

way, the model learns to predict a broader range of items and devel-

ops a more comprehensive understanding of their characteristics. In

contrast, INSPIRED, presenting a more balanced item distribution,

can effectively learn item representations with a lower mask proba-

bility, such as 0.2. This suggests that the model is less susceptible to

popularity bias and can effectively capture item relationships even

with fewer masked instances.

Overall, this analysis showed that the characteristics of the

datasets should be carefully taken into account when the recom-

mendation module of a sequential CRSs has to be trained. However,

as we previously showed in the experiments, a proper choice of

such parameters led our model to obtain results that overcome the

current state of the art.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel approach to incorporate external

knowledge into a transformer-based sequential recommendation

system by utilizing graph embeddings to generate pre-trained rep-

resentations of items and properties. Our approach integrates these

item property embeddings alongside positional embeddings within

the transformer architecture. This augmented representation allows

the model to capture richer contextual cues, leading to improved

recommendation precision as demonstrated by our experiments.We

conduct ablation studies to investigate the impact of different KG

information types and architectural components on the system’s

performance. Our results reveal that incorporating item properties

information along with positional embeddings significantly en-

hances the system’s ability to capture contextual relationships and

recommend relevant items. These findings establish the value of

incorporating external knowledge into CRSs and demonstrate the

potential of our approach to enhance recommendation accuracy.

As future work, we will explore the possibility of integrating

the system into a conversational module. This would allow us

to leverage the system’s ability to process and generate natural

language to create more engaging and interactive dialogue experi-

ences. Additionally, we could integrate further external knowledge

from diverse sources, such as pre-trained word embeddings and

distributional semantics models [30]. This would further enrich the

learning process with new and diverse information, leading to a

more accurate and comprehensive conversational recommendation

model.
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