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Today's Journey

1. Part 1: Foundations: What is the Recommendation Problem?

From Static Matrices to Sequential Transformers

2. Part 2: The LLM-RecSys Playbook

From Encoders to Generators

3. Part 3: Evaluation, Risks, and Grand Challenges
Evaluating the "Un-evaluable" & The Future

4. Part 4: Practical Lab: Building a Transformer-based Recommender
Hands-on with Bert4Rec (You already know how to do this!)
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Part 1: Foundations

What is the Recommendation Problem?
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The "Problem" is Everywhere

Spotify: "What song should you listen to next?"

Netflix: "What movie should you watch tonight?"

Amazon: "What product should you buy with this?"

At its core, a Recommender System (RecSys) is a tool for taming information overload.

Its job is to find a tiny set of relevant items from a massive catalog (billions of items) and
predict a user's preference.
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Module 1: The Classic Problem

We start with the User-Item Interaction Matrix,  .

This is the foundational data structure for ID-Based Recommendations.

Rows: All your users (e.g., )

Columns: All your items (e.g., )

Cells : A value representing preference.
Explicit Feedback: A user's rating (e.g., 1-5 stars).

Implicit Feedback: A user's action (e.g., 1=clicked, 0=not clicked).

Our goal: The matrix is 99.9% empty. Our job is to fill in the blanks.
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The Core Challenge: Sparsity

Most users have only interacted with a tiny fraction of items.

The question: How do we predict the preference for ?
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Classic Approaches (Briefly)

1. Content-Based Filtering:

"You liked this item, so you'll like items with similar features."

Analogy: -Nearest Neighbors in the item feature space.

Problem: Creates a "filter bubble." Low novelty.

2. Collaborative Filtering (CF):

"You are similar to other users. Therefore, you will like items they liked."

Analogy: -Nearest Neighbors in the user vector space.

Problem: Fails for new users/items (the "cold start" problem).
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Classic Approach: Matrix Factorization

Instead of -NN, let's learn a dense, low-dimensional latent representation (an
embedding) for every user and every item.

We learn a User-Factor vector 

We learn an Item-Factor vector 

The predicted rating  is simply the dot product:  .
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Matrix Factorization

We "solve" the sparse matrix  by approximating it as the product of two dense, low-rank

("thin") matrices,  and .
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Bridge 1: It's All Embeddings!

You already know this concept as word embeddings (like word2vec).

word2vec: Learns vectors from word co-occurrence in a sentence.

Matrix Factorization: Learns vectors from user-item co-occurrence in a preference

matrix.

The goal is the same: find a vector  where similarity (e.g., dot product) represents a

meaningful relationship.
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The Limit of the Static Matrix

The matrix view is static. It assumes your preferences are fixed.

But user preferences are dynamic:

You buy a laptop. Your next action is to look for a laptop case.

You watch a 2-hour action movie. Your next action is probably not another 2-hour
action movie.

The order and context of your interactions matter.
The real problem isn't "what items do you like?" it's...

"What item do you want right now?"
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Module 2: The Sequential Revolution

This moves us from a static problem to a dynamic, sequential one.

This is the true bridge to modern LLMs.
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The New Problem: Next-Item Prediction

We discard the static matrix. Our data is now a sequence of interactions.

User History:

Session:

The New Task: Given the user's history, predict the next item  they will interact with.
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Approach 1: Markov Chains (MC)

The simplest sequential model.

Assumption: The probability of the next item  depends only on the current item 

Formalization:

Analogy: This is a bigram (n=2) model from classic NLP.

Limitation: "A model with the memory of a goldfish." It has no concept of "iPhone 15"

when recommending "AirPods Pro" two steps later.
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The Deep Learning Solutions

If a user's history is a "sentence," we can use the same models NLP uses to "read" it.

1. RNNs GRU4Rec (2015)

2. Decoder-Only Transformers SASRec (2018)

3. Encoder-Only Transformers BERT4Rec (2019)

Let's look at the blocks.
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Model 1: GRU4Rec (The "RNN" of RecSys)

Concept: Use a Gated Recurrent Unit (GRU) to "read" the sequence of item

embeddings and build a "session state."

How it works:

i. The user clicks item .

ii. We look up its embedding .

iii. We feed this into the GRU with the previous hidden state .

iv. The new hidden state  becomes our "session embedding," summarizing

everything seen so far.

v. This  is used to predict the next item .
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GRU4Rec: Formalization

1. Input: At step , the one-hot vector for item  is embedded:

 (where  is the item embedding matrix)

2. Recurrence: The hidden state is updated:

3. Prediction: The score for every other item  in the vocabulary  is calculated from

this hidden state. A common way is a dot product:

4. Loss: Train with a session-parallel, mini-batch Cross-Entropy Loss (or BPR) on the
next item .
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The Problem with RNNs

Why did NLP largely abandon RNNs for Transformers?

1. Sequential Computation: Cannot be parallelized over the time dimension. Training is
slow.

2. Vanishing/Exploding Gradients: While GRUs/LSTMs help, they still struggle to model
very long-range dependencies (e.g., an item you clicked 100 steps ago).

Recommender systems faced the exact same problem.
So, they adopted the exact same solution.
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Model 2: BERT4Rec

Concept: Use a bidirectional Encoder-Only

Transformer.

Analogy: This is the "BERT" of RecSys.

The Problem: You can't use bidirectional attention

for next-item prediction. The model could "see the
future" and know the answer.

The Solution: We invent a new task, just like BERT
did.
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BERT4Rec: Masked Item Prediction

Instead of Next-Item Prediction, we use Masked Item Prediction.

1. Take a history: [i_1, i_2, i_3, i_4, i_5, i_6]

2. Randomly mask 15%: [i_1, i_2, [M], i_4, [M], i_6]

3. Train: Use the full, bidirectional context to predict the original items i_3  and i_5 .
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BERT4Rec: Architecture & Loss

1. Input Embedding:

The [M]  token is a special, learned [MASK]  embedding.
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BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks:

The sequence is fed through  layers of standard Transformer Encoder blocks
(bidirectional self-attention).
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BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks

3. Prediction:

Take the hidden states  corresponding to the masked positions.

Project them to the vocabulary: 
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BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks

3. Prediction

4. Loss:

Cross-Entropy Loss, but only on the masked positions.
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BERT4Rec: The "Inference Hack"

Wait... if it's trained to fill in the middle, how do we predict the end?

This is the clever (and slightly weird) part:

1. Take the user's actual history: [i_1, i_2, i_3, i_4, i_5]

2. Append a [MASK]  token to the very end: [i_1, i_2, i_3, i_4, i_5, [M]]

3. Feed this new sequence into the trained BERT4Rec model.

4. The model's prediction for that final [M]  token is our next-item recommendation.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 25



Model 3: SASRec

Concept: Self-Attentive Sequential

Recommendation.

Analogy: This is the "GPT" of RecSys.

Why?

i. It's an Autoregressive model.

ii. It uses Decoder-Only Transformer

blocks.

iii. It's trained on Next-Item Prediction.

iv. It uses Causal (Look-Ahead) Masking.
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SASRec: Architecture & Formalization

1. Input Embedding: This is identical to GPT.
An Item Embedding (like a token embedding).

A learned Positional Embedding (to know the order).
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SASRec: Architecture & Formalization

1. Input Embedding

2. Transformer Blocks: The embedded sequence is fed through  layers of standard

Transformer Decoder blocks.
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SASRec: Architecture & Formalization

1. Input Embedding

2. Transformer Blocks

3. Causal Mask: The self-attention is masked. The prediction for item at  can only
see items at .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 29



SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction:
We take the final hidden state  from the last Transformer block (corresponding

to the last item ).

We calculate its dot product against all item embeddings .

 (for all  in the catalog)
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SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction

2. Loss:

We use a standard Cross-Entropy Loss. We want to maximize the score of the
true next item .
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SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction

2. Loss

3. Inference:

reco_list = torch.topk(scores, 10)

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 32



Part 2: The LLM-RecSys Playbook

Architectures & State-of-the-Art Research
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Module 3: The New "Data"

Unifying Modalities with Text
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The Flaw in ID-Based Models

Models like SASRec  and BERT4Rec  are powerful, but they learn from Item IDs only.

1. The Cold-Start Problem:

If a new item item_99999  appears, the model has no embedding for it.

The model is useless for new items until it's retrained.

2. They are Data Hungry:

The model has to learn the relationship between item_732  (Inception) and

item_101  (The Matrix) from scratch, based only on user co-interactions.

It has no "world knowledge" that they are both "Sci-Fi thrillers."
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The LLM Shift: From IDs to Text

Why not use a model that already understands the world?

A pre-trained LLM already knows the relationship between "Inception" and "The
Matrix" from reading Wikipedia, reviews, and blogs.

We shift from using abstract item_ID  as the input to using the item's text (title,
description, reviews.

This solves the new-item cold-start problem. We can create a meaningful embedding for
a new item immediately just by encoding its description.
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"Verbalization": The Unification of
Data

Text becomes the universal interface.

Item Data (Right): Titles, Descriptions,
Metadata, Reviews.

User Data (Left): NL Profiles, Interaction
History.

Interaction Data (Center): Textual and

Non-Textual.
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The Three Modeling Paradigms

LLM-RecSys can be categorized into three main

paradigms.

1. LLM Embeddings + RS (LLM as Encoder)

The LLM's job is to be a feature
extractor, outputting high-quality

embeddings.

A separate, downstream RS  model
makes the final prediction.
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The Three Modeling Paradigms

LLM-RecSys can be categorized into three main

paradigms.

2. LLM as RS (LLM as Generator)

The LLM is the recommender.

It takes a prompt and generates the

final answer (e.g., "The Three-Body
Problem") directly.
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The Three Modeling Paradigms

LLM-RecSys can be categorized into three main

paradigms.

3. LLM Tokens + RS (LLM as Conductor)

The LLM is a "brain" in a multi-step
process.

It generates tokens (e.g., preference

summaries) that another component
(like an RS  or Agent ) uses.
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Module 4: Paradigm 1

DLLM4Rec  (LLMs as Feature Encoders)
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DLLM4Rec : Core Architectures

This paradigm uses an Encoder-Only model (like BERT) as a feature extractor.
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1. Dense Retrievers (Two-Tower):

Encode user preference and item text separately, then compute similarity.

Pro: Extremely fast at inference. Con: Shallow interaction.

2. Cross-Encoders (Re-ranking):

Concatenate user and item text, then encode jointly.

Pro: High accuracy (deep interaction). Con: Extremely slow.
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DLLM4Rec : Training Methods

We can train these DLLM encoders in two primary ways:

1. Fine-tuning: The DLLM (e.g., BERT) is trained end-to-end with the RS model. Its

weights are updated to optimize a specific RS  loss (e.g., predict rating or click.)

2. Prompt-Tuning: The DLLM is framed as a Masked Language Model (MLM). We

design a "prompt" and train the model to predict a verbalized label (e.g., "good" or
"bad") for the [MASK]  token.
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DLLM4Rec  U-BERT 

U-BERT is a classic example of the
Fine-Tuning paradigm.

Stage 1: Pre-training
The model is pre-trained on a

"masked word" prediction
task, using domain/user IDs

as segment embeddings.
This teaches the model the

language of reviews.
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DLLM4Rec  U-BERT

Stage 2: Fine-tuning

The pre-trained U-BERT is
then used as an encoder in a

downstream task.

It encodes the User's

Reviews and the Item's
Reviews, and a "Co-

Matching Layer" predicts the
final rating.
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DLLM4Rec  Prompt4NR 

Prompt4NR is a perfect example of
prompt-tuning.

Concept: Reformulates news
recommendation as a "fill-in-the-

blank" task.
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DLLM4Rec  Prompt4NR
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Prompt4NR Templates AUC MRR NDCG@5 NDCG@10

Discrete Template

Relevance 68.77 33.42 37.20 43.36

Emotion 68.77 33.29 37.12 43.19

Action 68.76 33.22 37.02 43.26

Utility 68.94 33.62 37.47 43.61

Ensembling 69.34 33.76 37.71 43.80

Continuous Template

Relevance 69.25 33.72 37.75 43.79

Emotion 68.76 33.51 37.39 43.47

Action 68.58 33.37 37.17 43.30

Utility 69.10 33.96 37.91 43.92

Ensembling 69.43 34.06 38.11 44.14

Hybrid Template

Relevance 68.47 33.26 37.20 43.24

Emotion 68.59 33.26 37.19 43.29

Action 69.37 34.02 37.96 44.00

Utility 68.79 33.45 37.35 43.49

Ensembling 69.22 33.78 37.77 43.87 49



Module 5: Paradigm 2

GLLM4Rec  (LLMs as Generators)
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GLLM4Rec : The Core Idea

In this paradigm, we use the LLM's generative capabilities to create the recommendation

itself.

The LLM is the recommender. It takes a unified prompt with task instructions, user history,

and candidates, and generates the final answer as text.
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GLLM4Rec : Taxonomy of Methods

These models are split into two families, based on whether the LLM's parameters are

updated.

1. Non-Tuning: Use the pre-trained LLM as-is.

Prompting (Zero-Shot): Give the LLM a task instruction.

In-Context Learning (Few-Shot): Give the instruction + a few examples.
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GLLM4Rec : Taxonomy of Methods

These models are split into two families, based on whether the LLM's parameters are

updated.

2. Tuning: Update the LLM's parameters for the RecSys task.
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GLLM4Rec  (Non-Tuning)

We can prompt LLMs to perform many RecSys tasks "out-of-the-box".

Task Examples: We can ask for Top-K items, Rating Prediction, Conversational replies,
or Explanation Generation.
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GLLM4Rec  (Non-Tuning)

We can prompt LLMs to perform many

RecSys tasks "out-of-the-box".

Prompt Examples: We can

prompt with...
Natural Language Profiles

Item Title History
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GLLM4Rec  P5

To improve performance, we can Tune

the LLM on recommendation-specific
data.

P5 (Instruction Tuning):
Unifies all RecSys tasks into

a single text-to-text
framework.
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GLLM4Rec  TALLRec

TALLRec (Instruction Tuning):
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GLLM4Rec  TALLRec

TALLRec (Instruction Tuning):
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Few-shot GRU4Rec Caser SASRec DROS TALLRec

movie 16 49.07 49.68 50.43 50.76 67.24‡

movie 64 49.87 51.06 50.48 51.54 67.48‡

movie 256 52.89 54.20 52.25 54.07 71.98‡

book 16 48.95 49.84 49.48 49.28 56.36

book 64 49.64 49.72 50.06 49.13 60.39‡

book 256 49.86 49.57 50.20 49.13 64.38‡
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Module 7: PhD Spotlight

[My Research] Empowering the "Genetator" with Knowledge

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 60



My Research: Empowering the "Genetator"

My Research (Petruzzelli et al., UMAP 2025) 
We provide a solution by "injecting" domain-specific knowledge directly into the LLM via

fine-tuning.
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My Research: Motivation &
Hypothesis

Motivation: LLMs generate
recommendations based on their pre-

trained knowledge. But this knowledge
may be:

1. Incomplete: The model may lack
knowledge about niche items

(e.g., indie music, specialized
books).
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My Research: Methodology
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My Pipeline: 1. Knowledge Extraction

We gathered domain-specific knowledge from three sources:

1. Textual Data:

The standard item descriptions, plots, etc.

2. Knowledge Graphs (KGs):

e.g., (Home Alone 2, starring, Joe Pesci) .

3. Collaborative Data:

e.g., People who like {Item A} also like {Item B} .
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My Pipeline: 2. Lexicalization & Training

We lexicalize (turn into text) this structured knowledge so the LLM can read it.

Source Lexicalized Knowledge

Text <begin_...> Kevin McCallister is back... <end_...>

KG <begin_...> Home Alone 2... Actors playing Joe Pesci... <end_...>

Collab.
<begin_...> People who like Home Alone 2... also tend to like The How the Grinch...

<end_...>

We fine-tune the LLM (LLaMA 3 8B) on a combined objective
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Key Finding 1 (RQ1)

We compared injecting knowledge vs. no injection (baseline LLM).

Result (Music & Books): Injecting knowledge (Text, KG, Collab) improved
recommendation accuracy.

Result (Movies): Injecting knowledge did not improve accuracy.
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Domain KN Source P@5 ↑ R@5 ↑ NDCG@5 ↑ AvgPop@5 ↓

Movies No Knowledge 0.7654 0.2105 0.7728 0.0921

Text 0.7384 0.2063 0.7572 0.0915

Graph 0.7534 0.2057 0.7607 0.0921

Collaborative 0.7611 0.2070 0.7709 0.0927

Music No Knowledge 0.8089 0.42723 0.8042 0.0390

Text 0.8428* 0.4435* 0.8491* 0.0393

Graph 0.8259 0.4368 0.8276 0.0390

Collaborative 0.8210 0.4341 0.8282 0.0384

Books No Knowledge 0.7816 0.6317 0.8601 0.0113

Text 0.7998 0.6494 0.8895 0.0111

Graph 0.8018 0.6498 0.8869 0.0112

Collaborative 0.8049* 0.6505* 0.8920* 0.0114
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...Why? (The Conclusion)

This result proves our hypothesis.
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...Why? (The Conclusion)

This result proves our hypothesis.
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Module 6: Paradigm 3

LLMs as Conductors (The "Brain")
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The "Conductor" Paradigm

The most advanced paradigm is not LLM vs. RS , but LLM + RS .

Here, the LLM acts as the "brain" or "Conductor" that manages a process and

coordinates other, more specialized tools (like a retriever, a classic RS).
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"Conductor" Example 1: RAG

Retrieval-Augmented Generation (RAG) is one way to fight hallucinations.

The LLM "conducts" the process:

1. User Action: User provides a query: "90's sci-fi thriller".

2. Tool Call (Retriever): The LLM sends the query to a Retriever, which searches a

"Knowledge Corpus".

3. Tool Output (Candidates): The Retriever returns a factual list: ["The Matrix",

"Inception", "The Bourne Identity"].

4. LLM (Conductor): The LLM's only job is to re-rank this factual list. It can't
hallucinate items that don't exist.
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"Conductor" Example 2: Conversational Agents

This is the most complex "conductor" role.

The LLM "conducts" a full, multi-turn dialogue by:

1. Classifying Intent: "What does the user want.

2. Updating State: "What have I learned?" (e.g., cuisine_type: "Japanese" ) .

3. Selecting Actions: "Should I call a tool? Or ask a question.

4. Generating a Response: Synthesizing all info into a reply.
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"Conductor" Example 3: RecLLM 

RecLLM proposes a roadmap for an end-to-end Conversational RecSys.

Goal: Use LLMs for every part of the stack: understanding, dialogue, and explanation.

Key Challenge: Lack of conversational training data.

Solution: Use an LLM to build a User Simulator to generate synthetic conversations.

Applying Large Language Models to Recommender Systems
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RecLLM: Architecture

The system is modular, with the LLM acting as the

core reasoning engine.

1. Dialogue Manager: Maintains conversation state.

2. User Profile: Interpretable natural language

profile.

3. Retriever: Fetches candidates from a large

corpus (YouTube videos).

4. Ranker & Explainer: Selects items and generates
explanations.
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RecLLM: The User Simulator

How do you train a CRS without data? Simulate it.

User Simulator: An LLM prompted with a specific "persona" and "goal".

System: The RecLLM model.

Loop: They talk to each other.

Result: Thousands of synthetic dialogues used to fine-tune the production model.
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Part 3: Evaluation, Risks, & Grand Challenges

"Do they work?" and "Are they safe?"
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Module 8: Evaluating the "Un-evaluable"

Metrics for Generative RecSys
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The Evaluation Challenge

Evaluating SASRec  is easy:

Prediction: item_4

Ground Truth: item_4

Result: Correct (Hit@1 = 1)

But how do you evaluate a generative model?

Prediction: "Based on your love of classics, I suggest 'The Great Gatsby' movie."

Ground Truth: item_1234

Result: ???

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 80



A New Toolkit of Metrics (Offline)

When the output is a list (e.g., in my research), we still use the classics:

Precision@k, Recall@k, nDCG@k

When the output is text (e.g., an explanation):

NLP Metrics: We borrow from NLP.
BLEU: Measures precision of n-gram overlap .

ROUGE: Measures recall of n-gram overlap .

Perplexity: Measures fluency and model confidence (lower is better).
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"LLM-as-a-Judge"

Use GPT-4 as your evaluator.

Method: Feed the generated output to GPT-4 with a detailed rubric .

Prompt: "Score this explanation from 1-10 on 'helpfulness' and 'factuality'."

Findings: This is surprisingly highly correlated with human evaluators (e.g., 80%

agreement).

Risks: This method has known biases:

Position Bias: Prefers the first option it's shown.

Verbosity Bias: Prefers longer, more verbose answers.

Self-Enhancement Bias: Prefers answers generated by itself.
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Online Evaluation

Offline metrics are just a proxy. The only ground truth is real user behavior.

A/B Testing: This is the gold standard for online evaluation .
Control (A): The old recommender.

Treatment (B): The new Gen-RecSys model.

Metrics: We measure real business outcomes: Click-Through-Rate (CTR), Add-
to-Cart, Session Length, Task Completion Time .
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SOTA Eval: Simulation-based Evaluation

Online A/B tests are the ground truth, but they are slow and expensive.
A new alternative: Simulate user behavior with LLM-based agents .

Why LLMs as Users?

They understand natural language, can adapt to scenarios, and can "reason" about

choices, making them realistic proxies for human users.

Example 1: Simulating Search (USimAgent) 

An LLM agent is used to simulate user search patterns, such as "querying, clicking,
and stopping behaviors".
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Part 4: Building a Transformer Recommender

https://tinyurl.com/Bert4Rec

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 85

https://tinyurl.com/Bert4Rec


Questions?

Thank You!

Alessandro Petruzzelli

Email: alessandro.petruzzelli@uniba.it
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