
From Transformers to Preferences: Bridging LLMs and
Recommender Systems

Alessandro Petruzzelli

PhD Student, University of Bari

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 1

Today's Journey

1. Part 1: Foundations: What is the Recommendation Problem?

From Static Matrices to Sequential Transformers

2. Part 2: The LLM-RecSys Playbook

From Encoders to Generators

3. Part 3: Evaluation, Risks, and Grand Challenges
Evaluating the "Un-evaluable" & The Future

4. Part 4: Practical Lab: Building a Transformer-based Recommender
Hands-on with Bert4Rec (You already know how to do this!)

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 2

Part 1: Foundations

What is the Recommendation Problem?

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 3

The "Problem" is Everywhere

Spotify: "What song should you listen to next?"

Netflix: "What movie should you watch tonight?"

Amazon: "What product should you buy with this?"

At its core, a Recommender System (RecSys) is a tool for taming information overload.

Its job is to find a tiny set of relevant items from a massive catalog (billions of items) and
predict a user's preference.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 4

Module 1: The Classic Problem

We start with the User-Item Interaction Matrix, .

This is the foundational data structure for ID-Based Recommendations.

Rows: All your users (e.g.,)

Columns: All your items (e.g.,)

Cells : A value representing preference.
Explicit Feedback: A user's rating (e.g., 1-5 stars).

Implicit Feedback: A user's action (e.g., 1=clicked, 0=not clicked).

Our goal: The matrix is 99.9% empty. Our job is to fill in the blanks.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 5

The Core Challenge: Sparsity

Most users have only interacted with a tiny fraction of items.

The question: How do we predict the preference for ?

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 6

Classic Approaches (Briefly)

1. Content-Based Filtering:

"You liked this item, so you'll like items with similar features."

Analogy: -Nearest Neighbors in the item feature space.

Problem: Creates a "filter bubble." Low novelty.

2. Collaborative Filtering (CF):

"You are similar to other users. Therefore, you will like items they liked."

Analogy: -Nearest Neighbors in the user vector space.

Problem: Fails for new users/items (the "cold start" problem).

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 7

Classic Approach: Matrix Factorization

Instead of -NN, let's learn a dense, low-dimensional latent representation (an
embedding) for every user and every item.

We learn a User-Factor vector

We learn an Item-Factor vector

The predicted rating is simply the dot product: .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 8

Matrix Factorization

We "solve" the sparse matrix by approximating it as the product of two dense, low-rank

("thin") matrices, and .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 9

Bridge 1: It's All Embeddings!

You already know this concept as word embeddings (like word2vec).

word2vec: Learns vectors from word co-occurrence in a sentence.

Matrix Factorization: Learns vectors from user-item co-occurrence in a preference

matrix.

The goal is the same: find a vector where similarity (e.g., dot product) represents a

meaningful relationship.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 10

The Limit of the Static Matrix

The matrix view is static. It assumes your preferences are fixed.

But user preferences are dynamic:

You buy a laptop. Your next action is to look for a laptop case.

You watch a 2-hour action movie. Your next action is probably not another 2-hour
action movie.

The order and context of your interactions matter.
The real problem isn't "what items do you like?" it's...

"What item do you want right now?"

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 11

Module 2: The Sequential Revolution

This moves us from a static problem to a dynamic, sequential one.

This is the true bridge to modern LLMs.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 12

The New Problem: Next-Item Prediction

We discard the static matrix. Our data is now a sequence of interactions.

User History:

Session:

The New Task: Given the user's history, predict the next item they will interact with.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 13

Approach 1: Markov Chains (MC)

The simplest sequential model.

Assumption: The probability of the next item depends only on the current item

Formalization:

Analogy: This is a bigram (n=2) model from classic NLP.

Limitation: "A model with the memory of a goldfish." It has no concept of "iPhone 15"

when recommending "AirPods Pro" two steps later.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 14

The Deep Learning Solutions

If a user's history is a "sentence," we can use the same models NLP uses to "read" it.

1. RNNs GRU4Rec (2015)

2. Decoder-Only Transformers SASRec (2018)

3. Encoder-Only Transformers BERT4Rec (2019)

Let's look at the blocks.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 15

Model 1: GRU4Rec (The "RNN" of RecSys)

Concept: Use a Gated Recurrent Unit (GRU) to "read" the sequence of item

embeddings and build a "session state."

How it works:

i. The user clicks item .

ii. We look up its embedding .

iii. We feed this into the GRU with the previous hidden state .

iv. The new hidden state becomes our "session embedding," summarizing

everything seen so far.

v. This is used to predict the next item .

Applying Large Language Models to Recommender Systems

1.

Alessandro Petruzzelli 16

GRU4Rec: Formalization

1. Input: At step , the one-hot vector for item is embedded:

 (where is the item embedding matrix)

2. Recurrence: The hidden state is updated:

3. Prediction: The score for every other item in the vocabulary is calculated from

this hidden state. A common way is a dot product:

4. Loss: Train with a session-parallel, mini-batch Cross-Entropy Loss (or BPR) on the
next item .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 17

The Problem with RNNs

Why did NLP largely abandon RNNs for Transformers?

1. Sequential Computation: Cannot be parallelized over the time dimension. Training is
slow.

2. Vanishing/Exploding Gradients: While GRUs/LSTMs help, they still struggle to model
very long-range dependencies (e.g., an item you clicked 100 steps ago).

Recommender systems faced the exact same problem.
So, they adopted the exact same solution.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 18

Model 2: BERT4Rec

Concept: Use a bidirectional Encoder-Only

Transformer.

Analogy: This is the "BERT" of RecSys.

The Problem: You can't use bidirectional attention

for next-item prediction. The model could "see the
future" and know the answer.

The Solution: We invent a new task, just like BERT
did.

Applying Large Language Models to Recommender Systems

3.

Alessandro Petruzzelli 19

BERT4Rec: Masked Item Prediction

Instead of Next-Item Prediction, we use Masked Item Prediction.

1. Take a history: [i_1, i_2, i_3, i_4, i_5, i_6]

2. Randomly mask 15%: [i_1, i_2, [M], i_4, [M], i_6]

3. Train: Use the full, bidirectional context to predict the original items i_3 and i_5 .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 20

BERT4Rec: Architecture & Loss

1. Input Embedding:

The [M] token is a special, learned [MASK] embedding.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 21

BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks:

The sequence is fed through layers of standard Transformer Encoder blocks
(bidirectional self-attention).

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 22

BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks

3. Prediction:

Take the hidden states corresponding to the masked positions.

Project them to the vocabulary:

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 23

BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks

3. Prediction

4. Loss:

Cross-Entropy Loss, but only on the masked positions.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 24

BERT4Rec: The "Inference Hack"

Wait... if it's trained to fill in the middle, how do we predict the end?

This is the clever (and slightly weird) part:

1. Take the user's actual history: [i_1, i_2, i_3, i_4, i_5]

2. Append a [MASK] token to the very end: [i_1, i_2, i_3, i_4, i_5, [M]]

3. Feed this new sequence into the trained BERT4Rec model.

4. The model's prediction for that final [M] token is our next-item recommendation.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 25

Model 3: SASRec

Concept: Self-Attentive Sequential

Recommendation.

Analogy: This is the "GPT" of RecSys.

Why?

i. It's an Autoregressive model.

ii. It uses Decoder-Only Transformer

blocks.

iii. It's trained on Next-Item Prediction.

iv. It uses Causal (Look-Ahead) Masking.

Applying Large Language Models to Recommender Systems

2.

Alessandro Petruzzelli 26

SASRec: Architecture & Formalization

1. Input Embedding: This is identical to GPT.
An Item Embedding (like a token embedding).

A learned Positional Embedding (to know the order).

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 27

SASRec: Architecture & Formalization

1. Input Embedding

2. Transformer Blocks: The embedded sequence is fed through layers of standard

Transformer Decoder blocks.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 28

SASRec: Architecture & Formalization

1. Input Embedding

2. Transformer Blocks

3. Causal Mask: The self-attention is masked. The prediction for item at can only
see items at .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 29

SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction:
We take the final hidden state from the last Transformer block (corresponding

to the last item).

We calculate its dot product against all item embeddings .

 (for all in the catalog)

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 30

SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction

2. Loss:

We use a standard Cross-Entropy Loss. We want to maximize the score of the
true next item .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 31

SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction

2. Loss

3. Inference:

reco_list = torch.topk(scores, 10)

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 32

Part 2: The LLM-RecSys Playbook

Architectures & State-of-the-Art Research

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 33

Module 3: The New "Data"

Unifying Modalities with Text

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 34

The Flaw in ID-Based Models

Models like SASRec and BERT4Rec are powerful, but they learn from Item IDs only.

1. The Cold-Start Problem:

If a new item item_99999 appears, the model has no embedding for it.

The model is useless for new items until it's retrained.

2. They are Data Hungry:

The model has to learn the relationship between item_732 (Inception) and

item_101 (The Matrix) from scratch, based only on user co-interactions.

It has no "world knowledge" that they are both "Sci-Fi thrillers."

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 35

The LLM Shift: From IDs to Text

Why not use a model that already understands the world?

A pre-trained LLM already knows the relationship between "Inception" and "The
Matrix" from reading Wikipedia, reviews, and blogs.

We shift from using abstract item_ID as the input to using the item's text (title,
description, reviews.

This solves the new-item cold-start problem. We can create a meaningful embedding for
a new item immediately just by encoding its description.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 36

"Verbalization": The Unification of
Data

Text becomes the universal interface.

Item Data (Right): Titles, Descriptions,
Metadata, Reviews.

User Data (Left): NL Profiles, Interaction
History.

Interaction Data (Center): Textual and

Non-Textual.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 37

The Three Modeling Paradigms

LLM-RecSys can be categorized into three main

paradigms.

1. LLM Embeddings + RS (LLM as Encoder)

The LLM's job is to be a feature
extractor, outputting high-quality

embeddings.

A separate, downstream RS model
makes the final prediction.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 38

The Three Modeling Paradigms

LLM-RecSys can be categorized into three main

paradigms.

2. LLM as RS (LLM as Generator)

The LLM is the recommender.

It takes a prompt and generates the

final answer (e.g., "The Three-Body
Problem") directly.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 39

The Three Modeling Paradigms

LLM-RecSys can be categorized into three main

paradigms.

3. LLM Tokens + RS (LLM as Conductor)

The LLM is a "brain" in a multi-step
process.

It generates tokens (e.g., preference

summaries) that another component
(like an RS or Agent) uses.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 40

Module 4: Paradigm 1

DLLM4Rec (LLMs as Feature Encoders)

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 41

DLLM4Rec : Core Architectures

This paradigm uses an Encoder-Only model (like BERT) as a feature extractor.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 42

1. Dense Retrievers (Two-Tower):

Encode user preference and item text separately, then compute similarity.

Pro: Extremely fast at inference. Con: Shallow interaction.

2. Cross-Encoders (Re-ranking):

Concatenate user and item text, then encode jointly.

Pro: High accuracy (deep interaction). Con: Extremely slow.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 43

DLLM4Rec : Training Methods

We can train these DLLM encoders in two primary ways:

1. Fine-tuning: The DLLM (e.g., BERT) is trained end-to-end with the RS model. Its

weights are updated to optimize a specific RS loss (e.g., predict rating or click.)

2. Prompt-Tuning: The DLLM is framed as a Masked Language Model (MLM). We

design a "prompt" and train the model to predict a verbalized label (e.g., "good" or
"bad") for the [MASK] token.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 44

DLLM4Rec U-BERT

U-BERT is a classic example of the
Fine-Tuning paradigm.

Stage 1: Pre-training
The model is pre-trained on a

"masked word" prediction
task, using domain/user IDs

as segment embeddings.
This teaches the model the

language of reviews.

Applying Large Language Models to Recommender Systems

4

Alessandro Petruzzelli 45

DLLM4Rec U-BERT

Stage 2: Fine-tuning

The pre-trained U-BERT is
then used as an encoder in a

downstream task.

It encodes the User's

Reviews and the Item's
Reviews, and a "Co-

Matching Layer" predicts the
final rating.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 46

DLLM4Rec Prompt4NR

Prompt4NR is a perfect example of
prompt-tuning.

Concept: Reformulates news
recommendation as a "fill-in-the-

blank" task.

Applying Large Language Models to Recommender Systems

5

Alessandro Petruzzelli 47

DLLM4Rec Prompt4NR

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 48

Prompt4NR Templates AUC MRR NDCG@5 NDCG@10

Discrete Template

Relevance 68.77 33.42 37.20 43.36

Emotion 68.77 33.29 37.12 43.19

Action 68.76 33.22 37.02 43.26

Utility 68.94 33.62 37.47 43.61

Ensembling 69.34 33.76 37.71 43.80

Continuous Template

Relevance 69.25 33.72 37.75 43.79

Emotion 68.76 33.51 37.39 43.47

Action 68.58 33.37 37.17 43.30

Utility 69.10 33.96 37.91 43.92

Ensembling 69.43 34.06 38.11 44.14

Hybrid Template

Relevance 68.47 33.26 37.20 43.24

Emotion 68.59 33.26 37.19 43.29

Action 69.37 34.02 37.96 44.00

Utility 68.79 33.45 37.35 43.49

Ensembling 69.22 33.78 37.77 43.87 49

Module 5: Paradigm 2

GLLM4Rec (LLMs as Generators)

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 50

GLLM4Rec : The Core Idea

In this paradigm, we use the LLM's generative capabilities to create the recommendation

itself.

The LLM is the recommender. It takes a unified prompt with task instructions, user history,

and candidates, and generates the final answer as text.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 51

GLLM4Rec : Taxonomy of Methods

These models are split into two families, based on whether the LLM's parameters are

updated.

1. Non-Tuning: Use the pre-trained LLM as-is.

Prompting (Zero-Shot): Give the LLM a task instruction.

In-Context Learning (Few-Shot): Give the instruction + a few examples.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 52

GLLM4Rec : Taxonomy of Methods

These models are split into two families, based on whether the LLM's parameters are

updated.

2. Tuning: Update the LLM's parameters for the RecSys task.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 53

GLLM4Rec (Non-Tuning)

We can prompt LLMs to perform many RecSys tasks "out-of-the-box".

Task Examples: We can ask for Top-K items, Rating Prediction, Conversational replies,
or Explanation Generation.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 54

GLLM4Rec (Non-Tuning)

We can prompt LLMs to perform many

RecSys tasks "out-of-the-box".

Prompt Examples: We can

prompt with...
Natural Language Profiles

Item Title History

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 55

GLLM4Rec P5

To improve performance, we can Tune

the LLM on recommendation-specific
data.

P5 (Instruction Tuning):
Unifies all RecSys tasks into

a single text-to-text
framework.

Applying Large Language Models to Recommender Systems

6

Alessandro Petruzzelli 56

GLLM4Rec TALLRec

TALLRec (Instruction Tuning):

Applying Large Language Models to Recommender Systems

7

Alessandro Petruzzelli 57

GLLM4Rec TALLRec

TALLRec (Instruction Tuning):

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 58

Few-shot GRU4Rec Caser SASRec DROS TALLRec

movie 16 49.07 49.68 50.43 50.76 67.24‡

movie 64 49.87 51.06 50.48 51.54 67.48‡

movie 256 52.89 54.20 52.25 54.07 71.98‡

book 16 48.95 49.84 49.48 49.28 56.36

book 64 49.64 49.72 50.06 49.13 60.39‡

book 256 49.86 49.57 50.20 49.13 64.38‡

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 59

Module 7: PhD Spotlight

[My Research] Empowering the "Genetator" with Knowledge

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 60

My Research: Empowering the "Genetator"

My Research (Petruzzelli et al., UMAP 2025)
We provide a solution by "injecting" domain-specific knowledge directly into the LLM via

fine-tuning.

Applying Large Language Models to Recommender Systems

9:

Alessandro Petruzzelli 61

My Research: Motivation &
Hypothesis

Motivation: LLMs generate
recommendations based on their pre-

trained knowledge. But this knowledge
may be:

1. Incomplete: The model may lack
knowledge about niche items

(e.g., indie music, specialized
books).

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 62

My Research: Motivation &
Hypothesis

Motivation: LLMs generate
recommendations based on their pre-

trained knowledge. But this knowledge
may be:

1. Incomplete: The model may lack
knowledge about niche items

(e.g., indie music, specialized
books).

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 63

My Research: Methodology

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 64

My Pipeline: 1. Knowledge Extraction

We gathered domain-specific knowledge from three sources:

1. Textual Data:

The standard item descriptions, plots, etc.

2. Knowledge Graphs (KGs):

e.g., (Home Alone 2, starring, Joe Pesci) .

3. Collaborative Data:

e.g., People who like {Item A} also like {Item B} .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 65

My Pipeline: 2. Lexicalization & Training

We lexicalize (turn into text) this structured knowledge so the LLM can read it.

Source Lexicalized Knowledge

Text <begin_...> Kevin McCallister is back... <end_...>

KG <begin_...> Home Alone 2... Actors playing Joe Pesci... <end_...>

Collab.
<begin_...> People who like Home Alone 2... also tend to like The How the Grinch...

<end_...>

We fine-tune the LLM (LLaMA 3 8B) on a combined objective

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 66

Key Finding 1 (RQ1)

We compared injecting knowledge vs. no injection (baseline LLM).

Result (Music & Books): Injecting knowledge (Text, KG, Collab) improved
recommendation accuracy.

Result (Movies): Injecting knowledge did not improve accuracy.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 67

Domain KN Source P@5 ↑ R@5 ↑ NDCG@5 ↑ AvgPop@5 ↓

Movies No Knowledge 0.7654 0.2105 0.7728 0.0921

Text 0.7384 0.2063 0.7572 0.0915

Graph 0.7534 0.2057 0.7607 0.0921

Collaborative 0.7611 0.2070 0.7709 0.0927

Music No Knowledge 0.8089 0.42723 0.8042 0.0390

Text 0.8428* 0.4435* 0.8491* 0.0393

Graph 0.8259 0.4368 0.8276 0.0390

Collaborative 0.8210 0.4341 0.8282 0.0384

Books No Knowledge 0.7816 0.6317 0.8601 0.0113

Text 0.7998 0.6494 0.8895 0.0111

Graph 0.8018 0.6498 0.8869 0.0112

Collaborative 0.8049* 0.6505* 0.8920* 0.0114

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 68

...Why? (The Conclusion)

This result proves our hypothesis.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 69

...Why? (The Conclusion)

This result proves our hypothesis.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 70

Module 6: Paradigm 3

LLMs as Conductors (The "Brain")

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 71

The "Conductor" Paradigm

The most advanced paradigm is not LLM vs. RS , but LLM + RS .

Here, the LLM acts as the "brain" or "Conductor" that manages a process and

coordinates other, more specialized tools (like a retriever, a classic RS).

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 72

"Conductor" Example 1: RAG

Retrieval-Augmented Generation (RAG) is one way to fight hallucinations.

The LLM "conducts" the process:

1. User Action: User provides a query: "90's sci-fi thriller".

2. Tool Call (Retriever): The LLM sends the query to a Retriever, which searches a

"Knowledge Corpus".

3. Tool Output (Candidates): The Retriever returns a factual list: ["The Matrix",

"Inception", "The Bourne Identity"].

4. LLM (Conductor): The LLM's only job is to re-rank this factual list. It can't
hallucinate items that don't exist.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 73

"Conductor" Example 2: Conversational Agents

This is the most complex "conductor" role.

The LLM "conducts" a full, multi-turn dialogue by:

1. Classifying Intent: "What does the user want.

2. Updating State: "What have I learned?" (e.g., cuisine_type: "Japanese") .

3. Selecting Actions: "Should I call a tool? Or ask a question.

4. Generating a Response: Synthesizing all info into a reply.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 74

"Conductor" Example 3: RecLLM

RecLLM proposes a roadmap for an end-to-end Conversational RecSys.

Goal: Use LLMs for every part of the stack: understanding, dialogue, and explanation.

Key Challenge: Lack of conversational training data.

Solution: Use an LLM to build a User Simulator to generate synthetic conversations.

Applying Large Language Models to Recommender Systems

10

Alessandro Petruzzelli 75

RecLLM: Architecture

The system is modular, with the LLM acting as the

core reasoning engine.

1. Dialogue Manager: Maintains conversation state.

2. User Profile: Interpretable natural language

profile.

3. Retriever: Fetches candidates from a large

corpus (YouTube videos).

4. Ranker & Explainer: Selects items and generates
explanations.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 76

RecLLM: The User Simulator

How do you train a CRS without data? Simulate it.

User Simulator: An LLM prompted with a specific "persona" and "goal".

System: The RecLLM model.

Loop: They talk to each other.

Result: Thousands of synthetic dialogues used to fine-tune the production model.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 77

Part 3: Evaluation, Risks, & Grand Challenges

"Do they work?" and "Are they safe?"

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 78

Module 8: Evaluating the "Un-evaluable"

Metrics for Generative RecSys

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 79

The Evaluation Challenge

Evaluating SASRec is easy:

Prediction: item_4

Ground Truth: item_4

Result: Correct (Hit@1 = 1)

But how do you evaluate a generative model?

Prediction: "Based on your love of classics, I suggest 'The Great Gatsby' movie."

Ground Truth: item_1234

Result: ???

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 80

A New Toolkit of Metrics (Offline)

When the output is a list (e.g., in my research), we still use the classics:

Precision@k, Recall@k, nDCG@k

When the output is text (e.g., an explanation):

NLP Metrics: We borrow from NLP.
BLEU: Measures precision of n-gram overlap .

ROUGE: Measures recall of n-gram overlap .

Perplexity: Measures fluency and model confidence (lower is better).

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 81

"LLM-as-a-Judge"

Use GPT-4 as your evaluator.

Method: Feed the generated output to GPT-4 with a detailed rubric .

Prompt: "Score this explanation from 1-10 on 'helpfulness' and 'factuality'."

Findings: This is surprisingly highly correlated with human evaluators (e.g., 80%

agreement).

Risks: This method has known biases:

Position Bias: Prefers the first option it's shown.

Verbosity Bias: Prefers longer, more verbose answers.

Self-Enhancement Bias: Prefers answers generated by itself.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 82

Online Evaluation

Offline metrics are just a proxy. The only ground truth is real user behavior.

A/B Testing: This is the gold standard for online evaluation .
Control (A): The old recommender.

Treatment (B): The new Gen-RecSys model.

Metrics: We measure real business outcomes: Click-Through-Rate (CTR), Add-
to-Cart, Session Length, Task Completion Time .

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 83

SOTA Eval: Simulation-based Evaluation

Online A/B tests are the ground truth, but they are slow and expensive.
A new alternative: Simulate user behavior with LLM-based agents .

Why LLMs as Users?

They understand natural language, can adapt to scenarios, and can "reason" about

choices, making them realistic proxies for human users.

Example 1: Simulating Search (USimAgent)

An LLM agent is used to simulate user search patterns, such as "querying, clicking,
and stopping behaviors".

Applying Large Language Models to Recommender Systems

8

Alessandro Petruzzelli 84

Part 4: Building a Transformer Recommender

https://tinyurl.com/Bert4Rec

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 85

https://tinyurl.com/Bert4Rec

Questions?

Thank You!

Alessandro Petruzzelli

Email: alessandro.petruzzelli@uniba.it

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 86

mailto:alessandro.petruzzelli@uniba.it

References

1. GRU4Rec: Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based
Recommendations with Recurrent Neural Networks. ICLR 2016.

2. SASRec: Kang, W. C., & McAuley, J. (2018). Self-Attentive Sequential

Recommendation. ICDM 2018.

3. BERT4Rec: Sun, F., et al. (2019). BERT4Rec: Sequential Recommendation with

Bidirectional Encoder Representations from Transformer. CIKM 2019.

4. U-BERT: Qiu, Z., et al. (2021). U-BERT: Pre-training User Representations for Improved
Recommendation. AAAI 2021.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 87

https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1511.06939
https://arxiv.org/abs/1808.09781
https://arxiv.org/abs/1808.09781
https://arxiv.org/abs/1904.06690
https://arxiv.org/abs/1904.06690
https://ojs.aaai.org/index.php/AAAI/article/view/16557
https://ojs.aaai.org/index.php/AAAI/article/view/16557

References

5. Prompt4NR: Zhang, Z., & Wang, B. (2023). Prompt Learning for News

Recommendation. SIGIR 2023.

6. P5: Geng, S., et al. (2022). Recommendation as Language Processing (RLP): A Unified

Pretrain, Personalized Prompt & Predict Paradigm (P5). RecSys 2022.

7. TALLRec: Bao, K., et al. (2023). TALLRec: An Effective and Efficient Tuning Framework
to Align Large Language Model with Recommendation. RecSys 2023.

8. USimAgent: Wang, L., et al. (2024). USimAgent: Large Language Models for
Simulating Search Users. SIGIR 2024.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 88

https://arxiv.org/abs/2304.05263
https://arxiv.org/abs/2304.05263
https://arxiv.org/abs/2203.13366
https://arxiv.org/abs/2203.13366
https://arxiv.org/abs/2305.00447
https://arxiv.org/abs/2305.00447
https://arxiv.org/abs/2403.09142
https://arxiv.org/abs/2403.09142

References

9. Petruzzelli et al.: Petruzzelli, et al. 2025. Empowering Recommender Systems based

on Large Language Models through Knowledge Injection Techniques. UMAP '25.

10. RecLLM: Friedman, L., et al. (2023). Leveraging Large Language Models in
Conversational Recommender Systems. arXiv preprint.

Applying Large Language Models to Recommender Systems

Alessandro Petruzzelli 89

https://dl.acm.org/doi/abs/10.1145/3699682.3728341
https://dl.acm.org/doi/abs/10.1145/3699682.3728341
https://arxiv.org/abs/2305.07961
https://arxiv.org/abs/2305.07961

