

From Transformers to Preferences: Bridging LLMs and Recommender Systems

Alessandro Petruzzelli

PhD Student, University of Bari

Today's Journey

- 1. Part 1: Foundations: What is the Recommendation Problem?**
 - *From Static Matrices to Sequential Transformers*
- 2. Part 2: The LLM-RecSys Playbook**
 - *From Encoders to Generators*
- 3. Part 3: Evaluation, Risks, and Grand Challenges**
 - *Evaluating the "Un-evaluable" & The Future*
- 4. Part 4: Practical Lab: Building a Transformer-based Recommender**
 - *Hands-on with Bert4Rec (You already know how to do this!)*

Part 1: Foundations

What is the Recommendation Problem?

The "Problem" is Everywhere

- **Spotify**: "What song should you listen to next?"
- **Netflix**: "What movie should you watch tonight?"
- **Amazon**: "What product should you buy with this?"

At its core, a Recommender System (RecSys) is a tool for **taming information overload**.

Its job is to find a *tiny* set of relevant items from a *massive* catalog (billions of items) and predict a user's **preference**.

Module 1: The Classic Problem

We start with the **User-Item Interaction Matrix**, R .

This is the foundational data structure for **ID-Based Recommendations**.

- **Rows:** All your users (e.g., U_1, U_2, \dots, U_m)
- **Columns:** All your items (e.g., I_1, I_2, \dots, I_n)
- **Cells $R_{u,i}$:** A value representing preference.
 - **Explicit Feedback:** A user's *rating* (e.g., 1-5 stars).
 - **Implicit Feedback:** A user's *action* (e.g., 1=clicked, 0=not clicked).

Our goal: The matrix is 99.9% empty. Our job is to fill in the blanks.

The Core Challenge: Sparsity

Most users have only interacted with a tiny fraction of items.

The question: How do we predict the preference for R_{u_2, i_3} ?

Classic Approaches (Briefly)

1. Content-Based Filtering:

- "You liked *this item*, so you'll like *items with similar features*."
- **Analogy:** k -Nearest Neighbors in the *item feature space*.
- **Problem:** Creates a "filter bubble." Low novelty.

2. Collaborative Filtering (CF):

- "You are *similar to other users*. Therefore, you will like *items they liked*."
- **Analogy:** k -Nearest Neighbors in the *user vector space*.
- **Problem:** Fails for new users/items (the "cold start" problem).

Classic Approach: Matrix Factorization

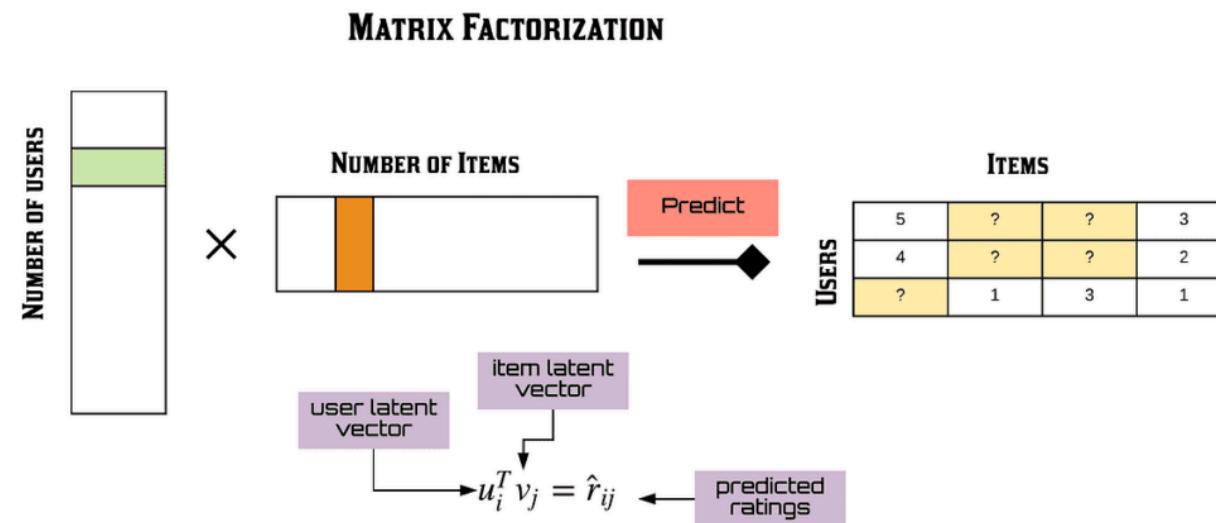
Instead of k -NN, let's learn a dense, low-dimensional *latent representation* (an **embedding**) for every user and every item.

- We learn a **User-Factor** vector $\gamma_u \in \mathbb{R}^k$
- We learn an **Item-Factor** vector $\gamma_i \in \mathbb{R}^k$

The predicted rating $\hat{r}_{u,i}$ is simply the dot product: $\hat{r}_{u,i} \approx \gamma_u \cdot \gamma_i$.

Matrix Factorization

We "solve" the sparse matrix R by approximating it as the product of two dense, low-rank ("thin") matrices, U and V .



Bridge 1: It's All Embeddings!

You already know this concept as **word embeddings** (like word2vec).

- **word2vec**: Learns vectors from word co-occurrence in a sentence.
- **Matrix Factorization**: Learns vectors from **user-item co-occurrence** in a preference matrix.

The goal is the same: find a vector γ where similarity (e.g., dot product) represents a meaningful relationship.

The Limit of the Static Matrix

The matrix view is **static**. It assumes your preferences are fixed.

But user preferences are dynamic:

- You buy a laptop. Your *next* action is to look for a laptop case.
- You watch a 2-hour action movie. Your *next* action is probably *not* another 2-hour action movie.

The *order* and *context* of your interactions matter.

The real problem isn't "what items do you like?" it's...

"What item do you want *right now*?"

Module 2: The Sequential Revolution

This moves us from a static problem to a **dynamic, sequential** one.

This is the *true* bridge to modern LLMs.

The New Problem: Next-Item Prediction

We discard the static matrix. Our data is now a **sequence of interactions**.

- **User History:** $S_u = (i_{u,1}, i_{u,2}, \dots, i_{u,t})$
- **Session:** (i_1, i_2, \dots, i_t)

The New Task: Given the user's history, predict the *next item* i_{t+1} they will interact with.

Approach 1: Markov Chains (MC)

The simplest sequential model.

- **Assumption:** The probability of the next item i_{t+1} depends *only* on the *current* item i_t
- **Formalization:** $p(i_{t+1}|i_1, \dots, i_t) = p(i_{t+1}|i_t)$
- **Analogy:** This is a **bigram (n=2) model** from classic NLP.
- **Limitation:** "A model with the memory of a goldfish." It has no concept of "iPhone 15" when recommending "AirPods Pro" two steps later.

The Deep Learning Solutions

If a user's history is a "sentence," we can use the same models NLP uses to "read" it.

1. RNNs → **GRU4Rec** (2015)
2. Decoder-Only Transformers → **SASRec** (2018)
3. Encoder-Only Transformers → **BERT4Rec** (2019)

Let's look at the blocks.

Model 1: GRU4Rec (The "RNN" of RecSys)¹

- **Concept:** Use a Gated Recurrent Unit (GRU) to "read" the sequence of item embeddings and build a "session state."
- **How it works:**
 - i. The user clicks item i_t .
 - ii. We look up its embedding e_{i_t} .
 - iii. We feed this into the GRU with the *previous* hidden state h_{t-1} .
 - iv. The new hidden state h_t becomes our "session embedding," summarizing everything seen so far.
 - v. This h_t is used to predict the *next* item i_{t+1} .

GRU4Rec: Formalization

1. **Input:** At step t , the one-hot vector for item i_t is embedded:

$$e_{i_t} = E \cdot i_t \text{ (where } E \text{ is the item embedding matrix)}$$

2. **Recurrence:** The hidden state is updated:

$$h_t = \text{GRU}(e_{i_t}, h_{t-1})$$

3. **Prediction:** The score for every *other* item j in the vocabulary V is calculated from this hidden state. A common way is a dot product:

$$\text{score}(i_j, t) = h_t^T \cdot e_j$$

4. **Loss:** Train with a session-parallel, mini-batch **Cross-Entropy Loss** (or BPR) on the *next* item i_{t+1} .

The Problem with RNNs

Why did NLP largely abandon RNNs for Transformers?

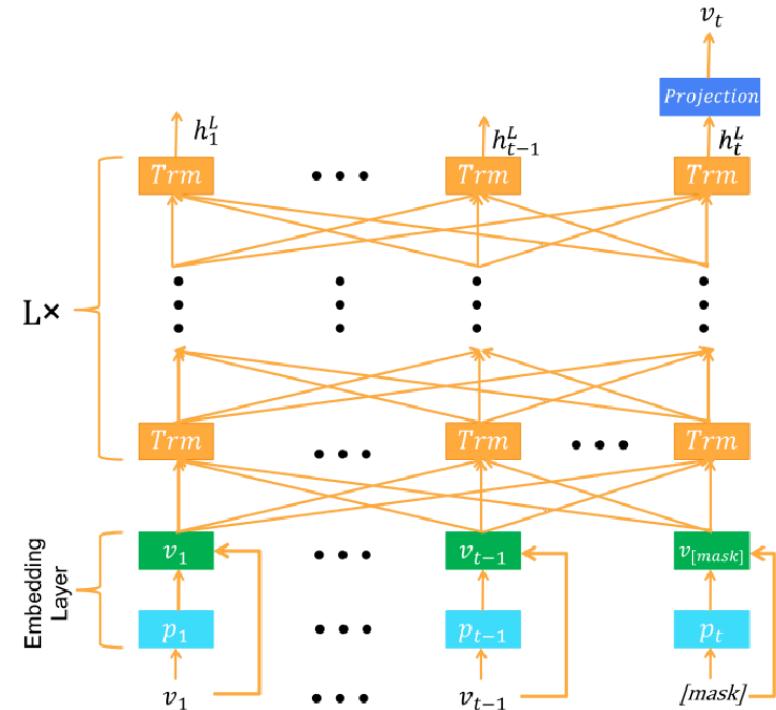
- 1. Sequential Computation:** Cannot be parallelized over the time dimension. Training is *slow*.
- 2. Vanishing/Exploding Gradients:** While GRUs/LSTMs help, they still struggle to model very long-range dependencies (e.g., an item you clicked 100 steps ago).

Recommender systems faced the *exact same problem*.

So, they adopted the *exact same solution*.

Model 2: BERT4Rec³

- **Concept:** Use a bidirectional Encoder-Only Transformer.
- **Analogy:** This is the "**BERT**" of RecSys.
- **The Problem:** You can't use bidirectional attention for *next-item* prediction. The model could "see the future" and know the answer.
- **The Solution:** We invent a new task, just like BERT did.



BERT4Rec: Masked Item Prediction

Instead of Next-Item Prediction, we use **Masked Item Prediction**.

1. **Take a history:** [i_1, i_2, i_3, i_4, i_5, i_6]
2. **Randomly mask 15%:** [i_1, i_2, [M], i_4, [M], i_6]
3. **Train:** Use the full, bidirectional context to predict the *original* items i_3 and i_5 .

BERT4Rec: Architecture & Loss

1. Input Embedding:

- $E_{input} = \text{ItemEmb}(I) + \text{PosEmb}(P)$
- The [M] token is a special, learned [MASK] embedding.

BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks:

- The sequence is fed through L layers of standard Transformer **Encoder** blocks (bidirectional self-attention).
- $H = \text{TransformerEncoder}(E_{input})$

BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks

3. Prediction:

- Take the hidden states $h_{[M]}$ corresponding to the *masked* positions.
- Project them to the vocabulary: $\hat{y}_{[M]} = \text{Softmax}(W_o h_{[M]} + b_o)$

BERT4Rec: Architecture & Loss

1. Input Embedding

2. Transformer Blocks

3. Prediction

4. Loss:

- Cross-Entropy Loss, but *only* on the masked positions.

BERT4Rec: The "Inference Hack"

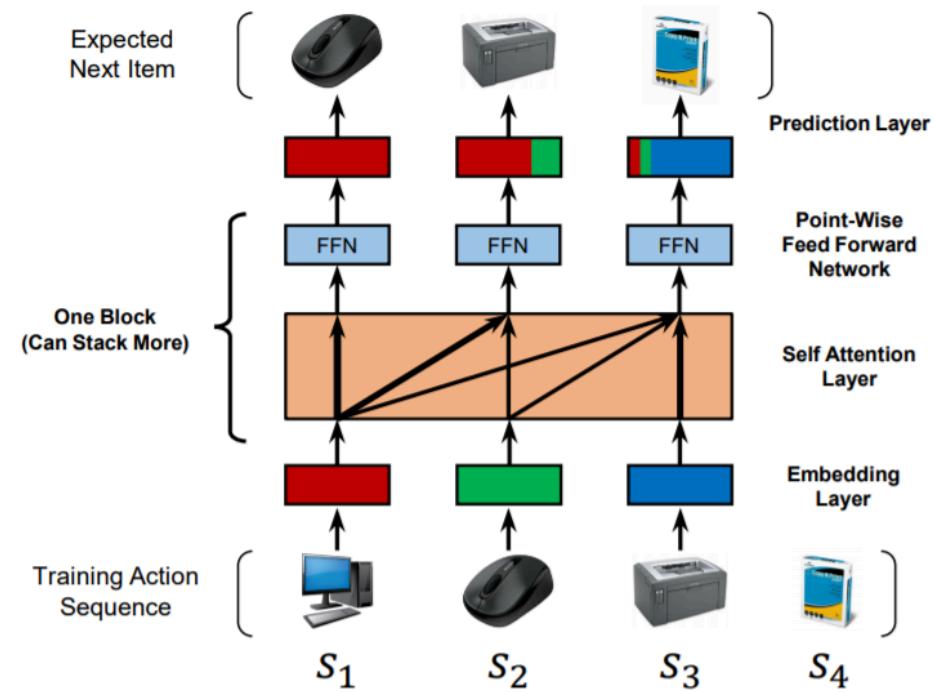
Wait... if it's trained to fill in the *middle*, how do we predict the *end*?

This is the clever (and slightly weird) part:

1. Take the user's *actual* history: `[i_1, i_2, i_3, i_4, i_5]`
2. Append a `[MASK]` token to the very end: `[i_1, i_2, i_3, i_4, i_5, [M]]`
3. Feed this *new* sequence into the trained BERT4Rec model.
4. The model's prediction for that *final* `[M]` token is our **next-item recommendation**.

Model 3: SASRec²

- **Concept: Self-Attentive Sequential Recommendation.**
- **Analogy:** This is the "GPT" of RecSys.
- **Why?**
 - i. It's an **Autoregressive** model.
 - ii. It uses **Decoder-Only Transformer** blocks.
 - iii. It's trained on **Next-Item Prediction**.
 - iv. It uses **Causal (Look-Ahead) Masking**.



SASRec: Architecture & Formalization

1. **Input Embedding:** This is *identical* to GPT.

- An **Item Embedding** (like a token embedding).
- A learned **Positional Embedding** (to know the order).
- $E_{input} = \text{ItemEmb}(I) + \text{PosEmb}(P)$

SASRec: Architecture & Formalization

1. Input Embedding

2. **Transformer Blocks:** The embedded sequence is fed through L layers of standard Transformer Decoder blocks.

- $S_l = \text{CausalSelfAttention}(E_{input})$
- $S_{l+1} = \text{FFN}(S_l)$

SASRec: Architecture & Formalization

1. Input Embedding
2. Transformer Blocks
3. **Causal Mask:** The self-attention is masked. The prediction for item at $t = 3$ can *only* see items at $t = 1, 2$.

SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction:

- We take the *final hidden state* s_t from the last Transformer block (corresponding to the *last item* i_t).
- We calculate its dot product against *all item embeddings* E .
- $\text{score}(i_j) = s_t^T \cdot e_j$ (for all j in the catalog)

SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction

2. Loss:

- We use a standard **Cross-Entropy Loss**. We want to maximize the score of the *true* next item i_{t+1} .
- $$L = -\log \left(\frac{\exp(\text{score}(i_{t+1}))}{\sum_{j \in V} \exp(\text{score}(i_j))} \right)$$

SASRec: Prediction & Loss

This is also just like GPT.

1. Prediction

2. Loss

3. Inference:

- `reco_list = torch.topk(scores, 10)`

Part 2: The LLM-RecSys Playbook

Architectures & State-of-the-Art Research

Module 3: The New "Data"

Unifying Modalities with Text

The Flaw in ID-Based Models

Models like `SASRec` and `BERT4Rec` are powerful, but they learn from **Item IDs** only.

1. The Cold-Start Problem:

- If a new item `item_99999` appears, the model has **no embedding** for it.
- The model is useless for new items until it's retrained.

2. They are Data Hungry:

- The model has to learn the relationship between `item_732` (*Inception*) and `item_101` (*The Matrix*) *from scratch*, based only on user co-interactions.
- It has no "world knowledge" that they are both "Sci-Fi thrillers."

The LLM Shift: From IDs to Text

Why not use a model that **already understands the world?**

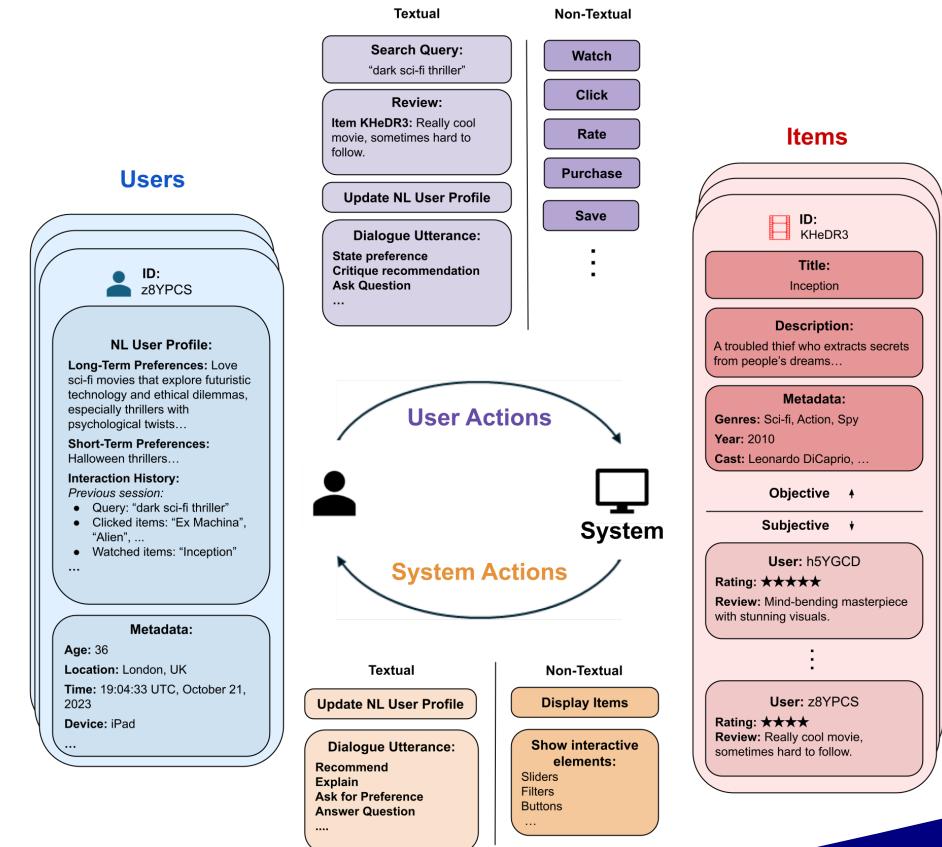
- A pre-trained LLM already knows the relationship between "Inception" and "The Matrix" from reading Wikipedia, reviews, and blogs.
- We shift from using abstract `item_ID` as the input to using the item's **text** (title, description, reviews).

This **solves the new-item cold-start problem**. We can create a meaningful embedding for a new item *immediately* just by encoding its description.

"Verbalization": The Unification of Data

Text becomes the **universal interface**.

- **Item Data (Right):** Titles, Descriptions, Metadata, Reviews.
- **User Data (Left):** NL Profiles, Interaction History.
- **Interaction Data (Center):** *Textual* and *Non-Textual*.

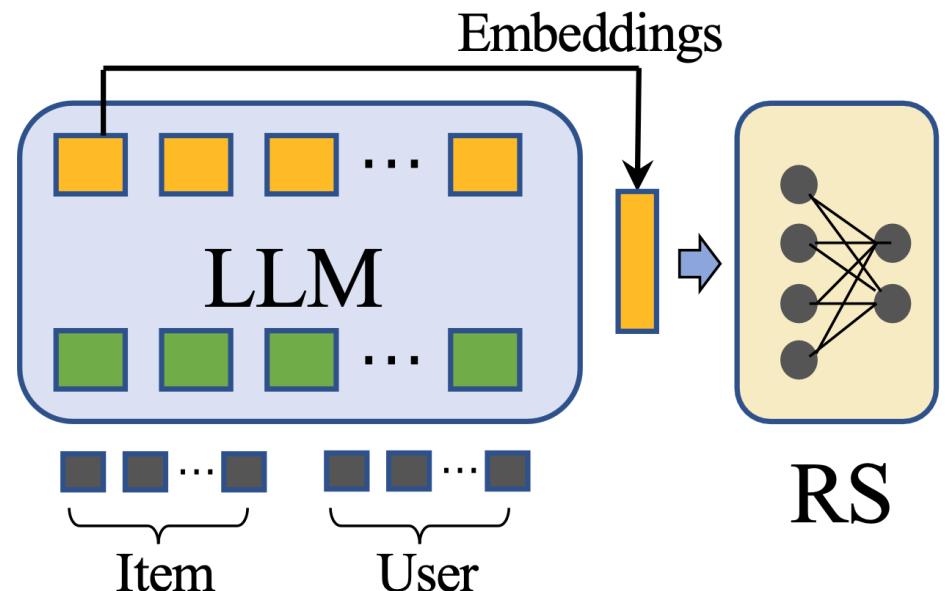


The Three Modeling Paradigms

LLM-RecSys can be categorized into three main paradigms.

1. LLM Embeddings + RS (LLM as Encoder)

- The LLM's job is to be a **feature extractor**, outputting high-quality embeddings.
- A *separate, downstream* RS model makes the final prediction.

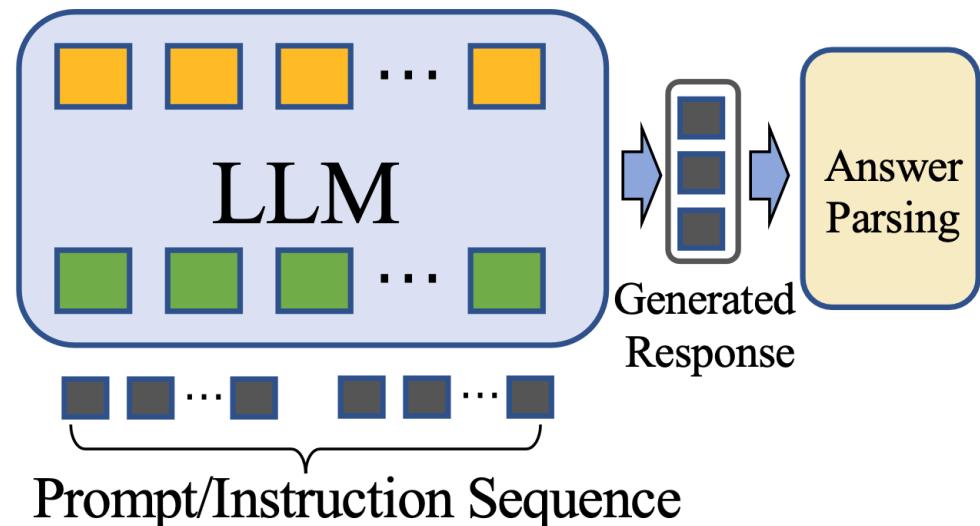


The Three Modeling Paradigms

LLM-RecSys can be categorized into three main paradigms.

2. LLM as RS (LLM as Generator)

- The LLM *is* the recommender.
- It takes a prompt and **generates the final answer** (e.g., "The Three-Body Problem") directly.

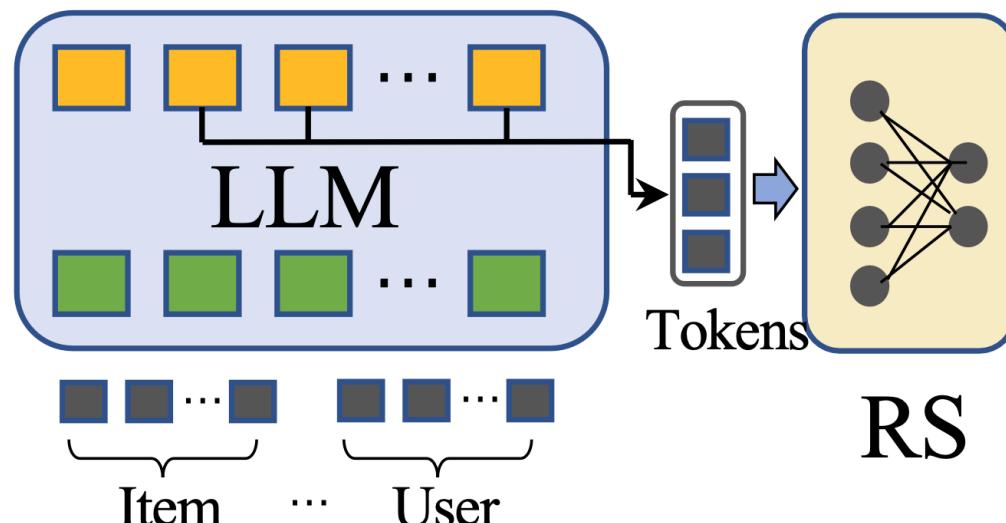


The Three Modeling Paradigms

LLM-RecSys can be categorized into three main paradigms.

3. LLM Tokens + RS (LLM as Conductor)

- The LLM is a "brain" in a multi-step process.
- It **generates tokens** (e.g., preference summaries) that *another* component (like an RS or Agent) uses.

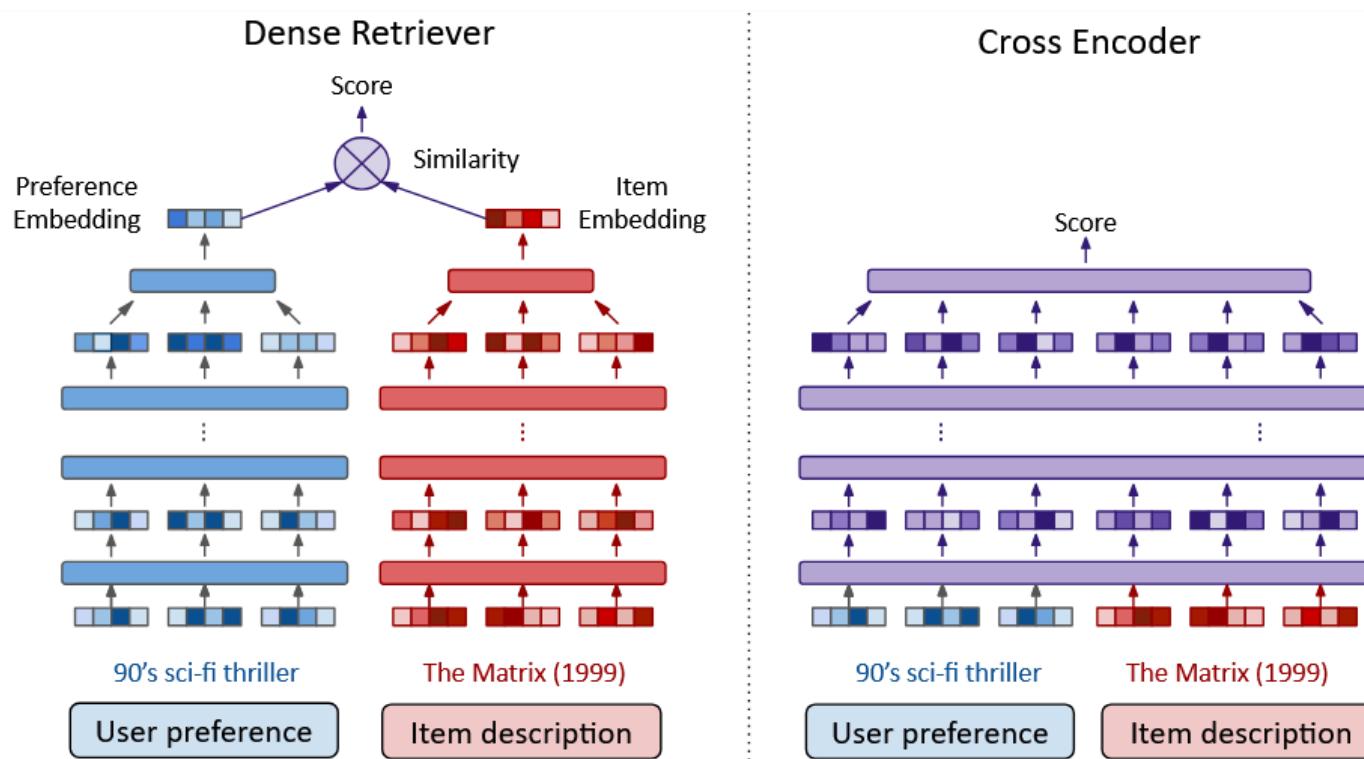


Module 4: Paradigm 1

DLLM4Rec (LLMs as Feature Encoders)

DLLM4Rec : Core Architectures

This paradigm uses an **Encoder-Only** model (like BERT) as a feature extractor.



1. Dense Retrievers (Two-Tower):

- Encode user preference and item text *separately*, then compute similarity.
- **Pro:** Extremely fast at inference. **Con:** Shallow interaction.

2. Cross-Encoders (Re-ranking):

- *Concatenate* user and item text, then encode *jointly*.
- **Pro:** High accuracy (deep interaction). **Con:** Extremely slow.

DLLM4Rec : Training Methods

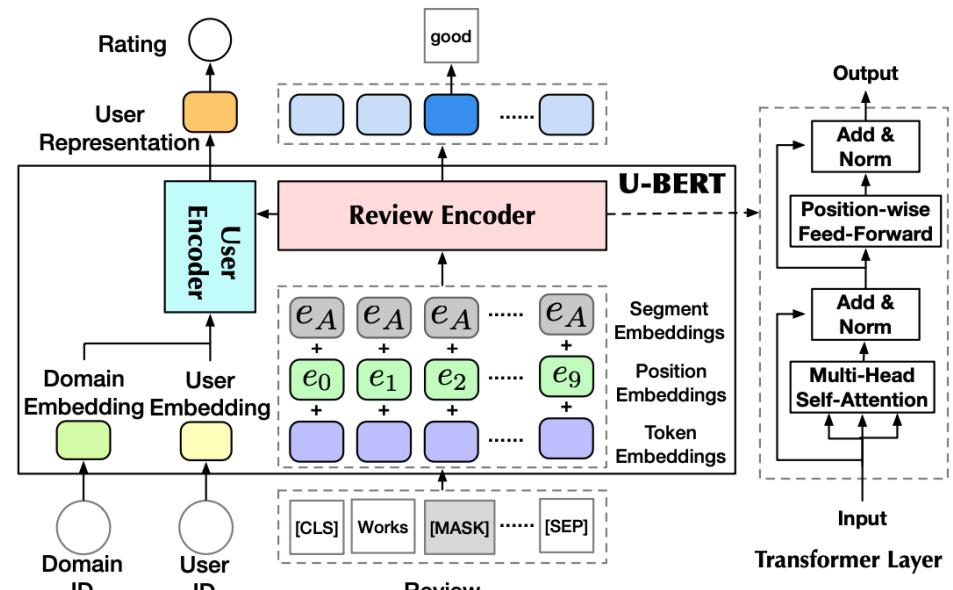
We can train these DLLM encoders in two primary ways:

- 1. Fine-tuning:** The DLLM (e.g., BERT) is trained end-to-end with the RS model. Its weights are *updated* to optimize a specific RS loss (e.g., predict rating or click.)
- 2. Prompt-Tuning:** The DLLM is framed as a **Masked Language Model (MLM)**. We design a "prompt" and train the model to predict a verbalized label (e.g., "good" or "bad") for the [MASK] token.

DLLM4Rec U-BERT⁴

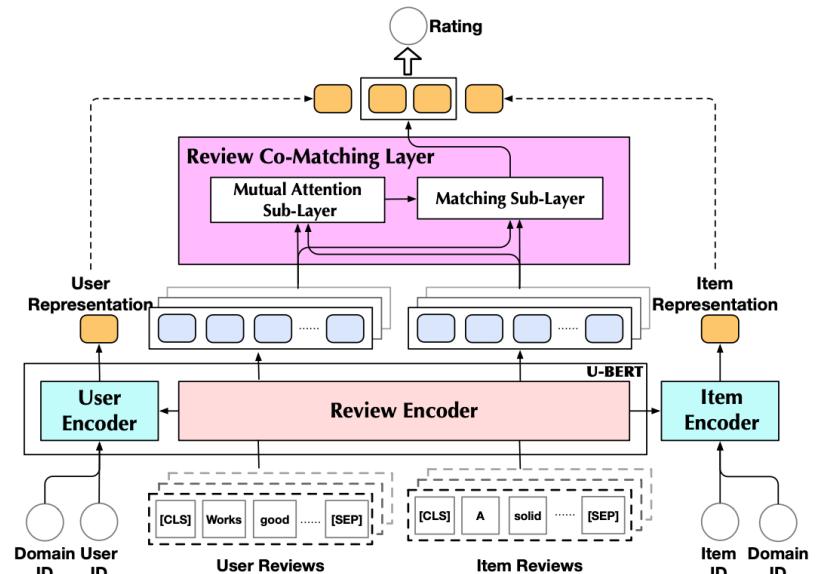
U-BERT is a classic example of the Fine-Tuning paradigm.

- **Stage 1: Pre-training**
 - The model is pre-trained on a "masked word" prediction task, using domain/user IDs as segment embeddings. This teaches the model the *language* of reviews.



DLLM4Rec U-BERT

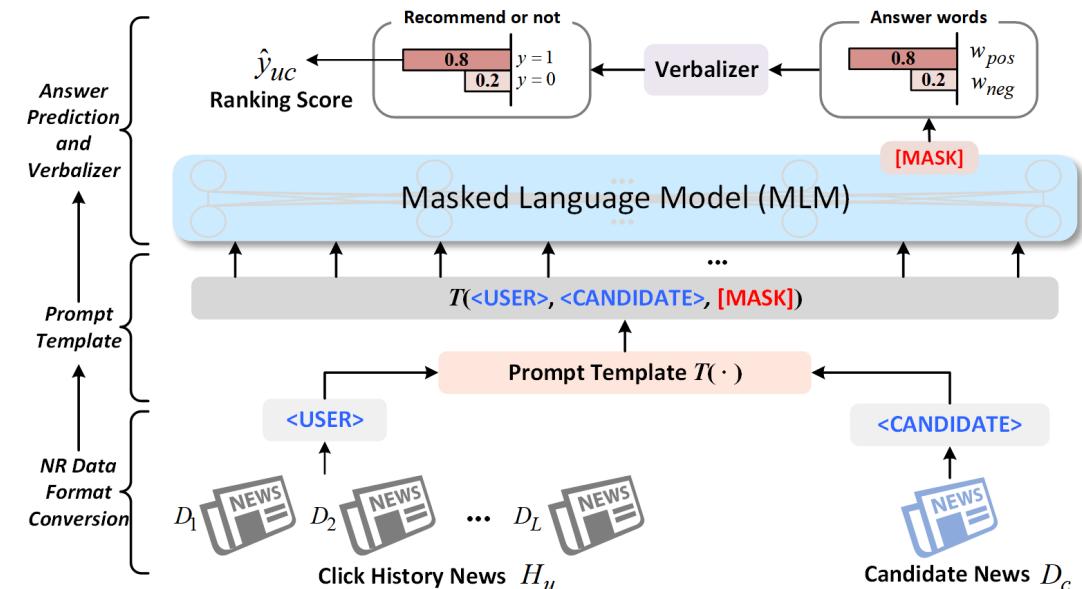
- Stage 2: Fine-tuning
 - The pre-trained U-BERT is then used as an encoder in a *downstream task*.
 - It encodes the User's Reviews and the Item's Reviews, and a "Co-Matching Layer" predicts the final rating.



DLLM4Rec Prompt4NR⁵

Prompt4NR is a perfect example of prompt-tuning.

- **Concept:** Reformulates news recommendation as a "fill-in-the-blank" task.



DLLM4Rec Prompt4NR

Types	Perspectives	Templates $T(<\text{USER}>, <\text{CANDIDATE}>, [\text{MASK}])$	Answer Words
Discrete Template	Relevance	$<\text{CANDIDATE}>$ is [MASK] to $<\text{USER}>$	related/unrelated
	Emotion	The user feels [MASK] about $<\text{CANDIDATE}>$ according to his area of interest $<\text{USER}>$	interesting/boring
	Action	User: $<\text{USER}>$ [SEP] News: $<\text{CANDIDATE}>$ [SEP] Does the user click the news? [MASK]	yes/no
	Utility	Recommending $<\text{CANDIDATE}>$ to the user is a [MASK] choice according to $<\text{USER}>$	good/bad
Continuous Template	Relevance	$[Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}> [M_1] \dots [M_{n_3}] [\text{MASK}] [P_1] \dots [P_{n_1}] <\text{USER}>$	related/unrelated
	Emotion	$[M_1] \dots [M_{n_3}] [\text{MASK}] [Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}> [P_1] \dots [P_{n_1}] <\text{USER}>$	interesting/boring
	Action	$[P_1] \dots [P_{n_1}] <\text{USER}>$ [SEP] $[Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}>$ [SEP] $[M_1] \dots [M_{n_3}] [\text{MASK}]$	yes/no
	Utility	$[Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}> [M_1] \dots [M_{n_3}] [\text{MASK}] [P_1] \dots [P_{n_1}] <\text{USER}>$	good/bad
Hybrid Template	Relevance	$[P_1] \dots [P_{n_1}] <\text{USER}>$ [SEP] $[Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}>$ [SEP] This news is [MASK] to the user's area of interest	related/unrelated
	Emotion	$[P_1] \dots [P_{n_1}] <\text{USER}>$ [SEP] $[Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}>$ [SEP] The user feels [MASK] about the news	interesting/boring
	Action	$[P_1] \dots [P_{n_1}] <\text{USER}>$ [SEP] $[Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}>$ [SEP] Does the user click the news? [MASK]	yes/no
	Utility	$[P_1] \dots [P_{n_1}] <\text{USER}>$ [SEP] $[Q_1] \dots [Q_{n_2}] <\text{CANDIDATE}>$ [SEP] Recommending the news to the user is a [MASK] choice	good/bad

Prompt4NR Templates	AUC	MRR	NDCG@5	NDCG@10
Discrete Template				
Relevance	68.77	33.42	37.20	43.36
Emotion	68.77	33.29	37.12	43.19
Action	68.76	33.22	37.02	43.26
Utility	68.94	33.62	37.47	43.61
Ensembling	69.34	33.76	37.71	43.80
Continuous Template				
Relevance	69.25	33.72	37.75	43.79
Emotion	68.76	33.51	37.39	43.47
Action	68.58	33.37	37.17	43.30
Utility	69.10	33.96	37.91	43.92
Ensembling	69.43	34.06	38.11	44.14
Hybrid Template				
Relevance	68.47	33.26	37.20	43.24
Emotion	68.59	33.26	37.19	43.29
Action	69.37	34.02	37.96	44.00
Utility	68.79	33.45	37.35	43.49
Ensembling	69.22	33.78	37.77	43.87

Module 5: Paradigm 2

GLLM4Rec (LLMs as Generators)

GLLM4Rec : The Core Idea

In this paradigm, we use the LLM's **generative capabilities** to *create* the recommendation itself.

The LLM *is* the recommender. It takes a unified prompt with task instructions, user history, and candidates, and **generates the final answer as text**.

GLLM4Rec : Taxonomy of Methods

These models are split into two families, based on whether the LLM's parameters are updated.

1. **Non-Tuning**: Use the pre-trained LLM as-is.

- **Prompting (Zero-Shot)**: Give the LLM a task instruction.
- **In-Context Learning (Few-Shot)**: Give the instruction + a few examples.

GLLM4Rec : Taxonomy of Methods

These models are split into two families, based on whether the LLM's parameters are updated.

2. **Tuning:** Update the LLM's parameters for the RecSys task.

GLLM4Rec (Non-Tuning)

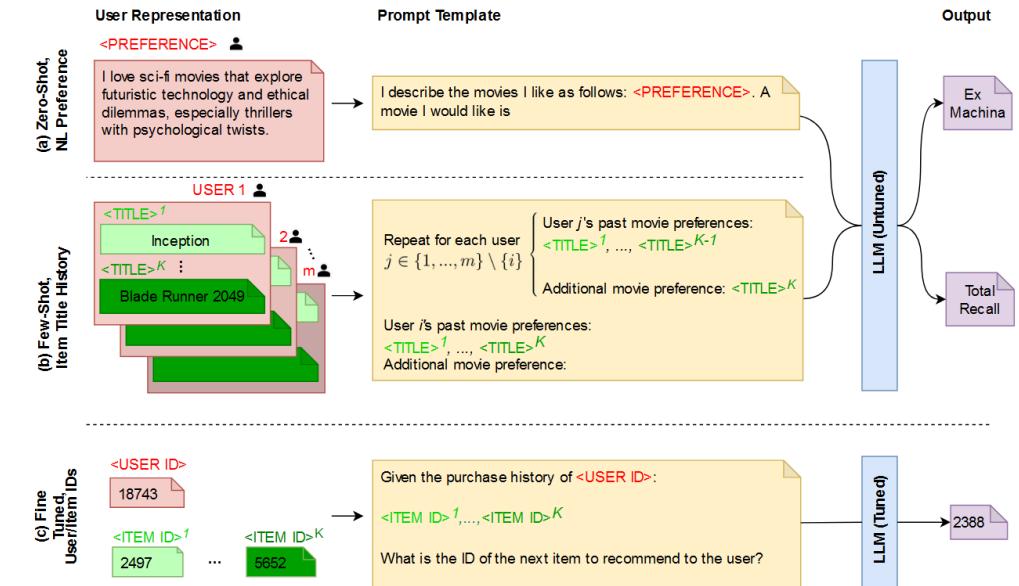
We can prompt LLMs to perform many RecSys tasks "out-of-the-box".

- **Task Examples:** We can ask for Top-K items, Rating Prediction, Conversational replies, or Explanation Generation.

GLLM4Rec (Non-Tuning)

We can prompt LLMs to perform many RecSys tasks "out-of-the-box".

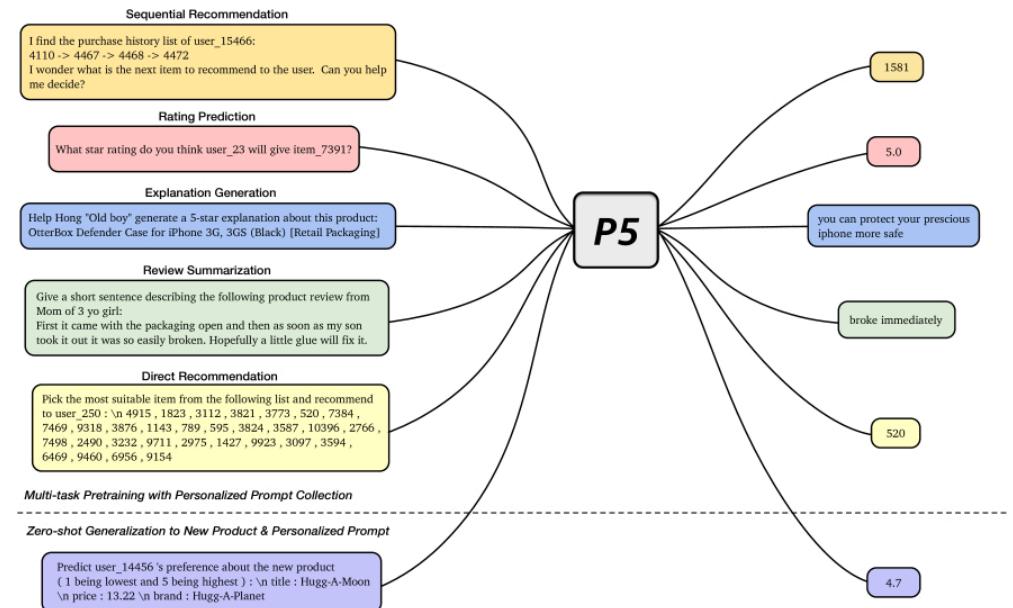
- **Prompt Examples:** We can prompt with...
 - **Natural Language Profiles**
 - **Item Title History**



GLLM4Rec P5⁶

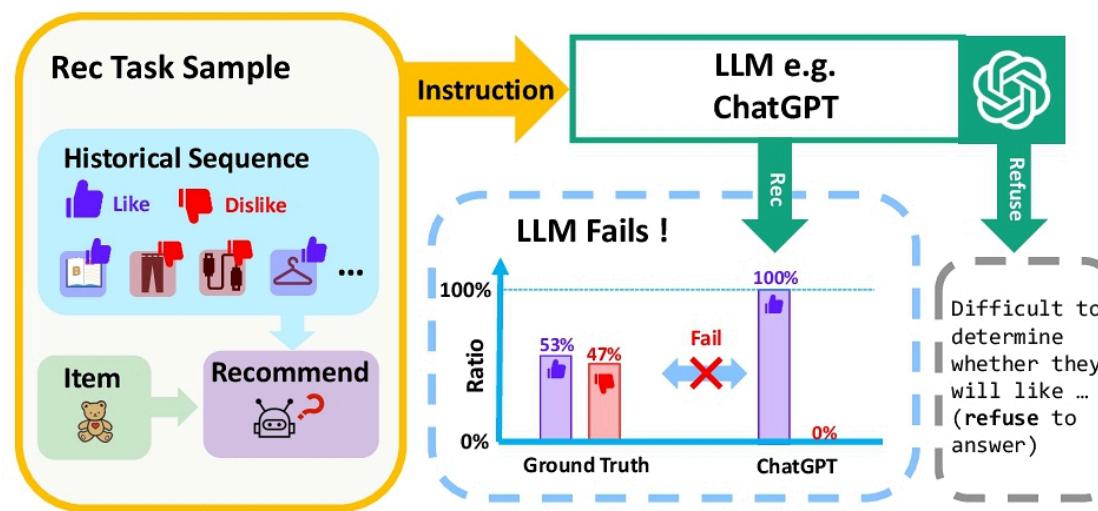
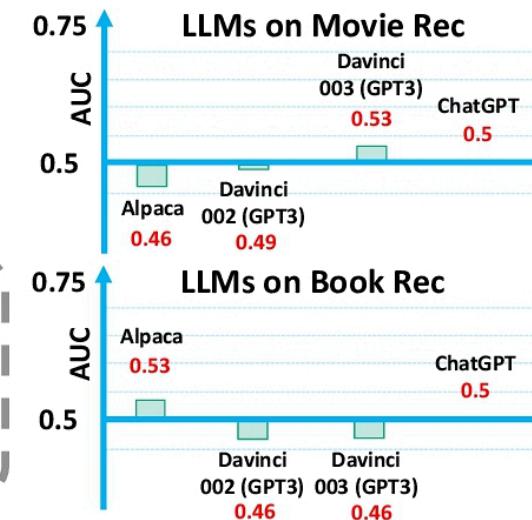
To improve performance, we can **Tune** the LLM on recommendation-specific data.

- **P5 (Instruction Tuning):**
 - *Unifies* all RecSys tasks into a single text-to-text framework.



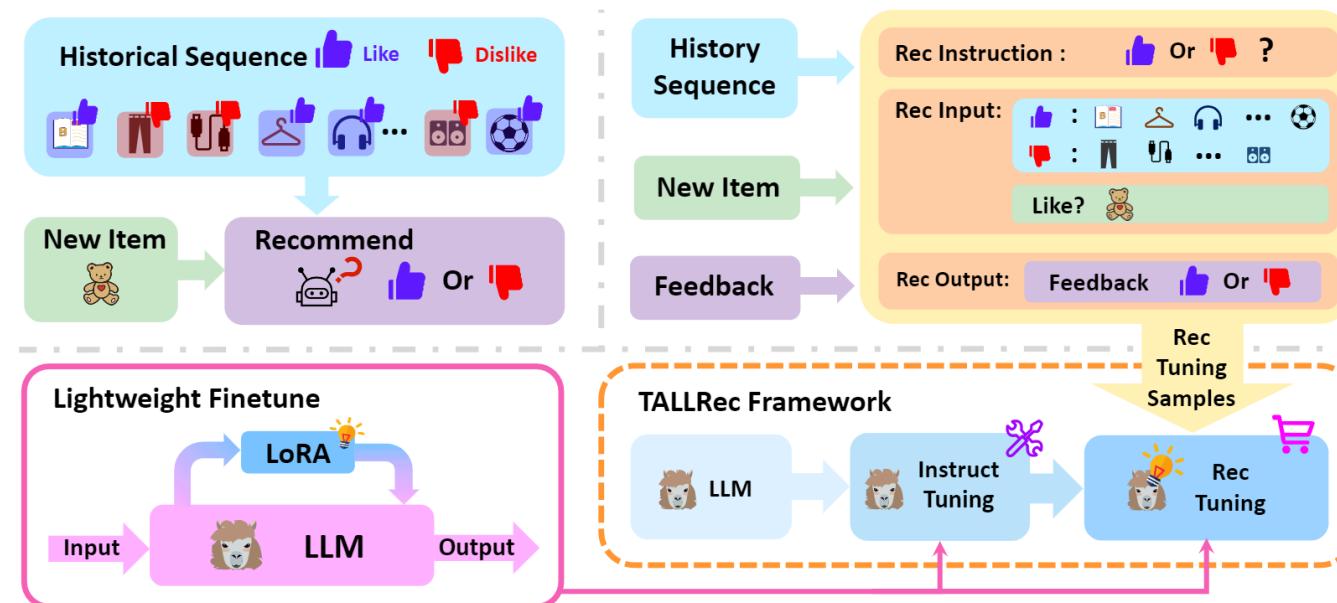
GLLM4Rec TALLRec⁷

- TALLRec (Instruction Tuning):



GLLM4Rec TALLRec

- TALLRec (Instruction Tuning):



Few-shot	GRU4Rec	Caser	SASRec	DROS	TALLRec
movie 16	49.07	49.68	50.43	50.76	67.24[#]
movie 64	49.87	51.06	50.48	51.54	67.48[#]
movie 256	52.89	54.20	52.25	54.07	71.98[#]
book 16	48.95	49.84	49.48	49.28	56.36
book 64	49.64	49.72	50.06	49.13	60.39[#]
book 256	49.86	49.57	50.20	49.13	64.38[#]

Module 7: PhD Spotlight

[My Research] Empowering the "Genetator" with Knowledge

My Research: Empowering the "Genetator"

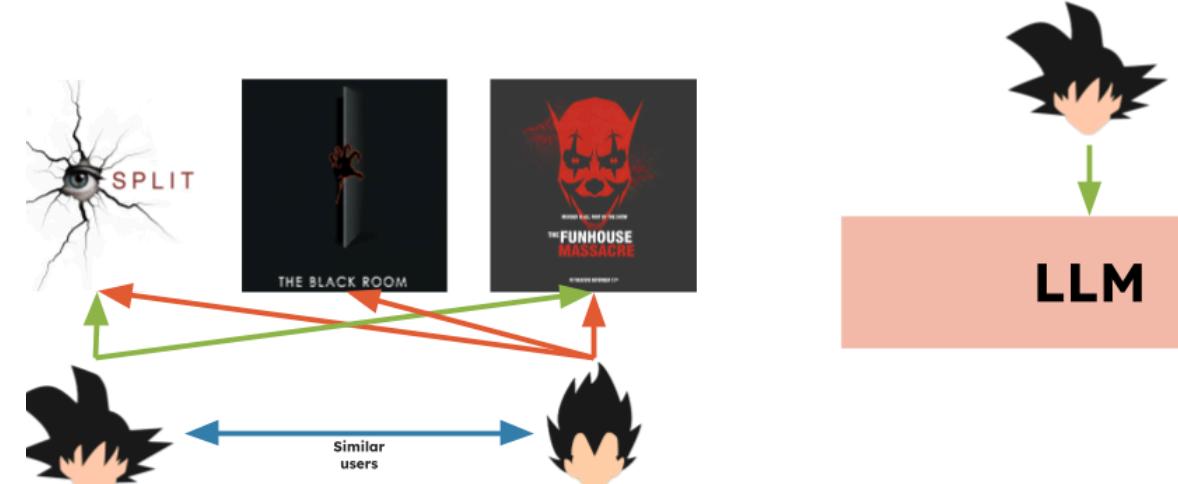
My Research (Petruzzelli et al., UMAP 2025)⁹:

We provide a solution by "injecting" domain-specific knowledge directly into the LLM via fine-tuning.

My Research: Motivation & Hypothesis

Motivation: LLMs generate recommendations based on their *pre-trained knowledge*. But this knowledge may be:

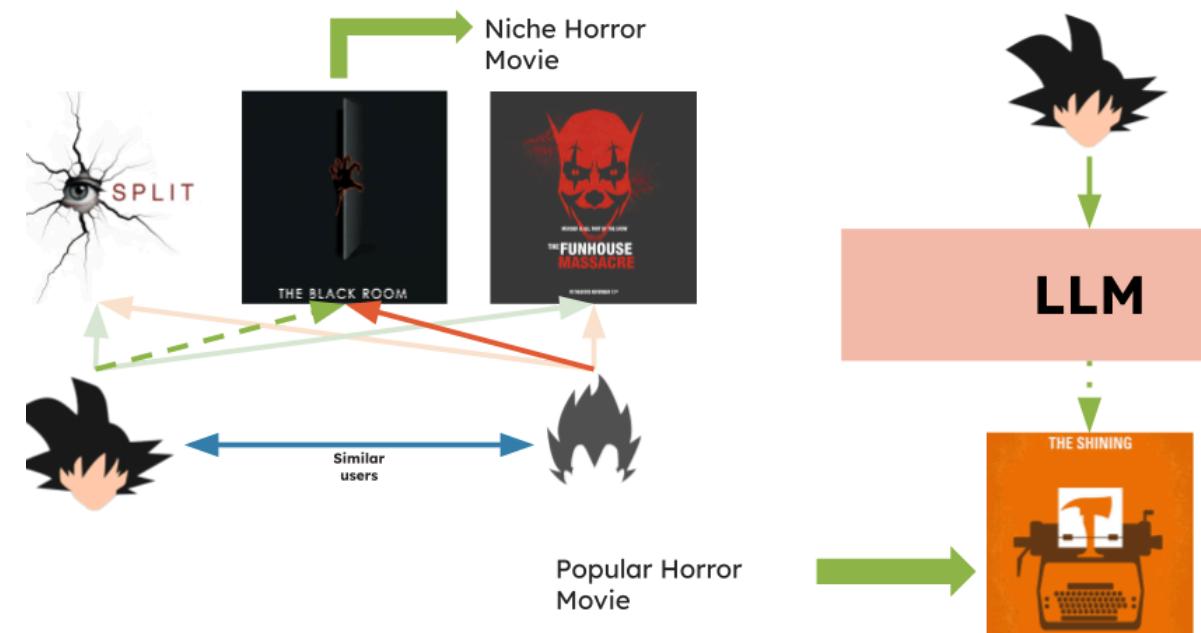
- 1. Incomplete:** The model may lack knowledge about *niche* items (e.g., indie music, specialized books).



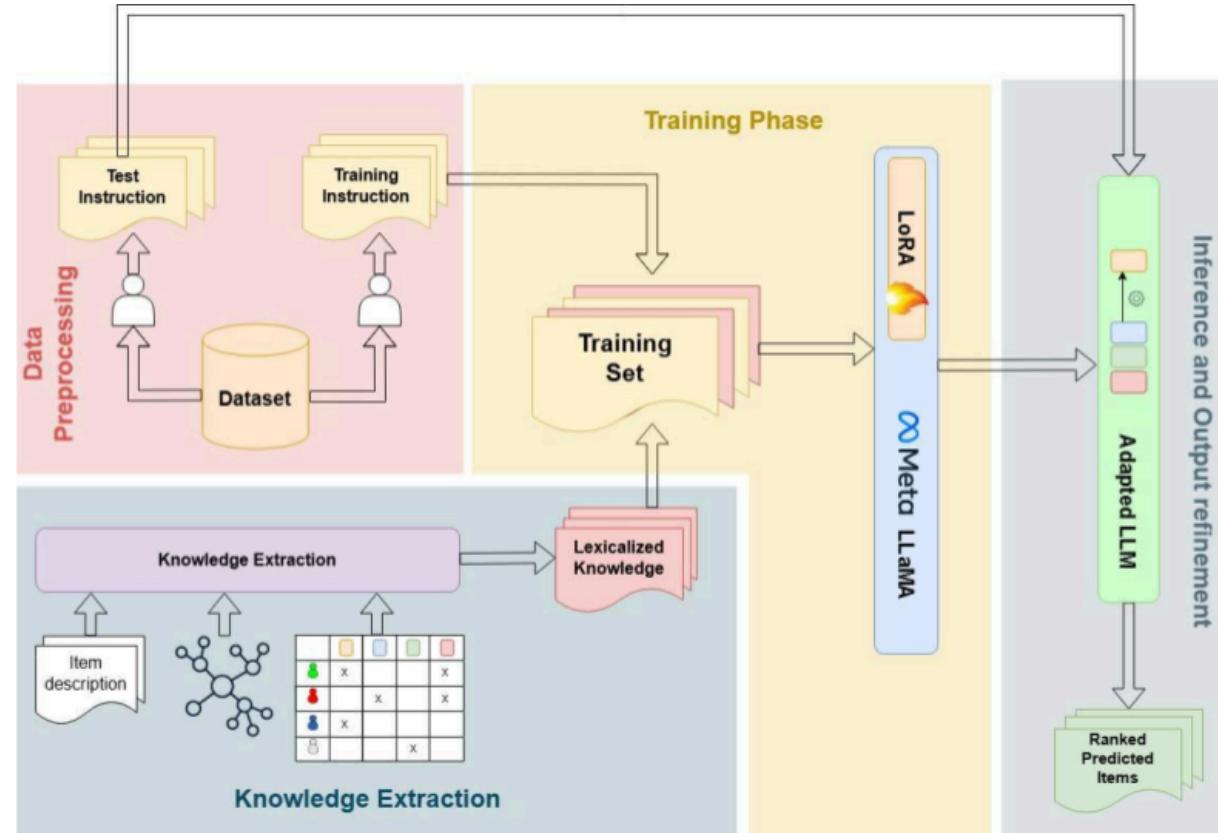
My Research: Motivation & Hypothesis

Motivation: LLMs generate recommendations based on their *pre-trained knowledge*. But this knowledge may be:

- 1. Incomplete:** The model may lack knowledge about *niche* items (e.g., indie music, specialized books).



My Research: Methodology



My Pipeline: 1. Knowledge Extraction

We gathered domain-specific knowledge from three sources:

1. Textual Data:

- The standard item descriptions, plots, etc.

2. Knowledge Graphs (KGs):

- e.g., (Home Alone 2, starring, Joe Pesci) .

3. Collaborative Data:

- e.g., People who like {Item A} also like {Item B} .

My Pipeline: 2. Lexicalization & Training

We **lexicalize** (turn into text) this structured knowledge so the LLM can read it.

Source	Lexicalized Knowledge
Text	<begin_...> Kevin McCallister is back... <end_...>
KG	<begin_...> Home Alone 2... Actors playing Joe Pesci... <end_...>
Collab.	<begin_...> People who like Home Alone 2... also tend to like The How the Grinch... <end_...>

We fine-tune the LLM (LLaMA 3 8B) on a **combined objective**

Key Finding 1 (RQ1)

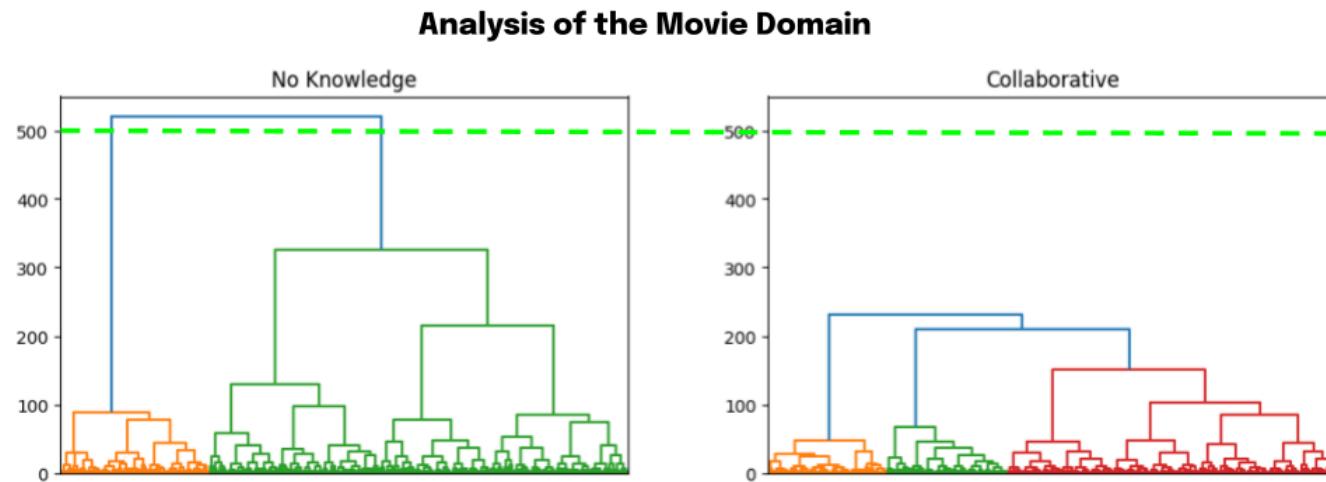
We compared injecting knowledge vs. no injection (baseline LLM).

- **Result (Music & Books):** Injecting knowledge (Text, KG, Collab) *improved* recommendation accuracy.
- **Result (Movies):** Injecting knowledge **did not improve accuracy.**

Domain	KN Source	P@5 ↑	R@5 ↑	NDCG@5 ↑	AvgPop@5 ↓
Movies	No Knowledge	0.7654	0.2105	0.7728	0.0921
	Text	0.7384	0.2063	0.7572	0.0915
	Graph	0.7534	0.2057	0.7607	0.0921
	Collaborative	0.7611	0.2070	0.7709	0.0927
Music	No Knowledge	0.8089	0.42723	0.8042	0.0390
	Text	0.8428*	0.4435*	0.8491*	0.0393
	Graph	0.8259	0.4368	0.8276	0.0390
	Collaborative	0.8210	0.4341	0.8282	0.0384
Books	No Knowledge	0.7816	0.6317	0.8601	0.0113
	Text	0.7998	0.6494	0.8895	0.0111
	Graph	0.8018	0.6498	0.8869	0.0112
	Collaborative	0.8049*	0.6505*	0.8920*	0.0114

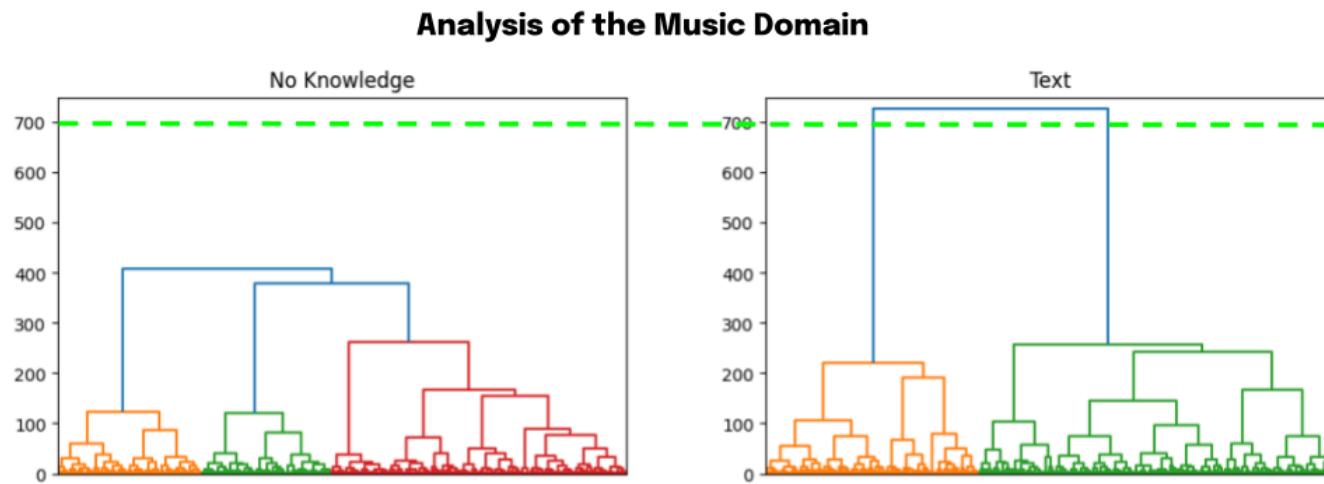
...Why? (The Conclusion)

This result proves our hypothesis.



...Why? (The Conclusion)

This result proves our hypothesis.



Module 6: Paradigm 3

LLMs as Conductors (The "Brain")

The "Conductor" Paradigm

The most advanced paradigm is not `LLM vs. RS`, but `LLM + RS`.

Here, the LLM acts as the "brain" or "**Conductor**" that *manages a process and coordinates* other, more specialized tools (like a retriever, a classic RS).

"Conductor" Example 1: RAG

Retrieval-Augmented Generation (RAG) is one way to fight hallucinations.

The LLM "conducts" the process:

- 1. User Action:** User provides a query: "90's sci-fi thriller".
- 2. Tool Call (Retriever):** The LLM sends the query to a **Retriever**, which searches a "Knowledge Corpus".
- 3. Tool Output (Candidates):** The Retriever returns a *factual* list: ["The Matrix", "Inception", "The Bourne Identity"].
- 4. LLM (Conductor):** The LLM's *only* job is to **re-rank this factual list**. It can't hallucinate items that don't exist.

"Conductor" Example 2: Conversational Agents

This is the most complex "conductor" role.

The LLM "conducts" a full, multi-turn dialogue by:

- 1. Classifying Intent:** "What does the user want.
- 2. Updating State:** "What have I learned?" (e.g., `cuisine_type: "Japanese"`).
- 3. Selecting Actions:** "Should I call a tool? Or ask a question.
- 4. Generating a Response:** Synthesizing all info into a reply.

"Conductor" Example 3: RecLLM¹⁰

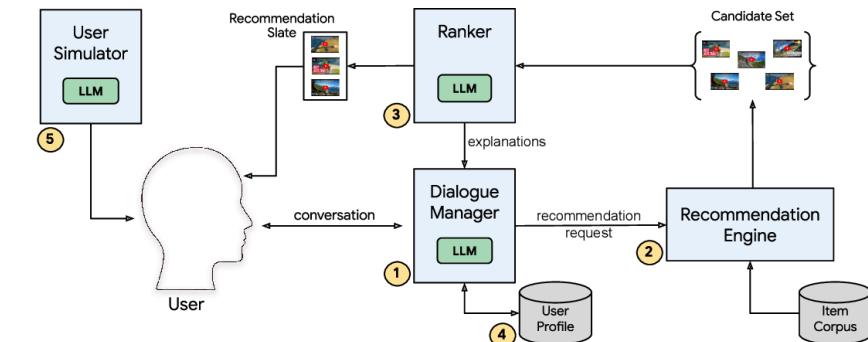
RecLLM proposes a roadmap for an end-to-end Conversational RecSys.

- **Goal:** Use LLMs for every part of the stack: understanding, dialogue, and explanation.
- **Key Challenge:** Lack of conversational training data.
- **Solution:** Use an LLM to build a **User Simulator** to generate synthetic conversations.

RecLLM: Architecture

The system is modular, with the LLM acting as the core reasoning engine.

- 1. Dialogue Manager:** Maintains conversation state.
- 2. User Profile:** Interpretable natural language profile.
- 3. Retriever:** Fetches candidates from a large corpus (YouTube videos).
- 4. Ranker & Explainer:** Selects items and generates explanations.



RecLLM: The User Simulator

How do you train a CRS without data? **Simulate it.**

- **User Simulator:** An LLM prompted with a specific "persona" and "goal".
- **System:** The RecLLM model.
- **Loop:** They talk to each other.
- **Result:** Thousands of synthetic dialogues used to fine-tune the production model.

Part 3: Evaluation, Risks, & Grand Challenges

"Do they work?" and "Are they safe?"

Module 8: Evaluating the "Un-evaluable"

Metrics for Generative RecSys

The Evaluation Challenge

Evaluating `SASRec` is easy:

- **Prediction:** `item_4`
- **Ground Truth:** `item_4`
- **Result:** Correct (Hit@1 = 1)

But how do you evaluate a **generative model**?

- **Prediction:** "Based on your love of classics, I suggest 'The Great Gatsby' movie."
- **Ground Truth:** `item_1234`
- **Result:** ???

A New Toolkit of Metrics (Offline)

When the output is a **list** (e.g., in my research), we still use the classics:

- **Precision@k, Recall@k, nDCG@k**

When the output is **text** (e.g., an explanation):

- **NLP Metrics:** We borrow from NLP.
 - **BLEU:** Measures *precision* of n-gram overlap .
 - **ROUGE:** Measures *recall* of n-gram overlap .
 - **Perplexity:** Measures *fluency* and model confidence (lower is better).

"LLM-as-a-Judge"

Use GPT-4 as your evaluator.

- **Method:** Feed the generated output to GPT-4 with a detailed rubric .
- **Prompt:** "Score this explanation from 1-10 on 'helpfulness' and 'factuality'."
- **Findings:** This is surprisingly highly correlated with human evaluators (e.g., 80% agreement).
- **Risks:** This method has known biases:
 - **Position Bias:** Prefers the *first* option it's shown.
 - **Verbosity Bias:** Prefers *longer*, more verbose answers.
 - **Self-Enhancement Bias:** Prefers answers generated by itself.

Online Evaluation

Offline metrics are just a proxy. The only ground truth is real user behavior.

- **A/B Testing:** This is the gold standard for online evaluation .
 - **Control (A):** The old recommender.
 - **Treatment (B):** The new Gen-RecSys model.
 - **Metrics:** We measure real business outcomes: Click-Through-Rate (CTR), Add-to-Cart, Session Length, Task Completion Time .

SOTA Eval: Simulation-based Evaluation

Online A/B tests are the ground truth, but they are **slow and expensive**.

A new alternative: **Simulate user behavior with LLM-based agents**.

Why LLMs as Users?

- They understand natural language, can adapt to scenarios, and can "reason" about choices, making them realistic proxies for human users.

Example 1: Simulating Search (USimAgent)⁸

- An LLM agent is used to simulate user search patterns, such as "querying, clicking, and stopping behaviors".

Part 4: Building a Transformer Recommender

<https://tinyurl.com/Bert4Rec>

Questions?

Thank You!

- Alessandro Petruzzelli
- Email: alessandro.petruzzelli@uniba.it

References

1. **GRU4Rec**: Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). [Session-based Recommendations with Recurrent Neural Networks](#). ICLR 2016.
2. **SASRec**: Kang, W. C., & McAuley, J. (2018). [Self-Attentive Sequential Recommendation](#). ICDM 2018.
3. **BERT4Rec**: Sun, F., et al. (2019). [BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer](#). CIKM 2019.
4. **U-BERT**: Qiu, Z., et al. (2021). [U-BERT: Pre-training User Representations for Improved Recommendation](#). AAAI 2021.

References

5. **Prompt4NR**: Zhang, Z., & Wang, B. (2023). [Prompt Learning for News Recommendation](#). SIGIR 2023.
6. **P5**: Geng, S., et al. (2022). [Recommendation as Language Processing \(RLP\): A Unified Pretrain, Personalized Prompt & Predict Paradigm \(P5\)](#). RecSys 2022.
7. **TALLRec**: Bao, K., et al. (2023). [TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation](#). RecSys 2023.
8. **USimAgent**: Wang, L., et al. (2024). [USimAgent: Large Language Models for Simulating Search Users](#). SIGIR 2024.

References

9. **Petruzzelli et al.**: Petruzzelli, et al. 2025. [Empowering Recommender Systems based on Large Language Models through Knowledge Injection Techniques](#). UMAP '25.
10. **RecLLM**: Friedman, L., et al. (2023). [Leveraging Large Language Models in Conversational Recommender Systems](#). arXiv preprint.