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Per iniziare...

Vi dico due parole. Cosa vi viene in mente?

"Considerato" e "Triangolo"

(Prendetevi 10 secondi per pensare...)
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Scenario A

"L'area del triangolo, considerato il

triangolo rettangolo..."

Contesto: Matematica / Geometria.
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Scenario B

"Il triangolo no, non l'avevo considerato..."

Contesto: Renato Zero (Musica Italiana).
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La Lezione di Oggi

Senza Contesto, la stessa informazione è ambigua.

Gli LLM sono come noi:

Se non diamo loro il contesto giusto, tirano a indovinare.
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La Lezione di Oggi

Senza Contesto, la stessa informazione è ambigua.

Gli LLM sono come noi:

Se non diamo loro il contesto giusto, tirano a indovinare.

Come fornire il contesto perfetto ad un LLM?

Master GenAI - Accesso a conoscenza esterna tramite RAG

Alessandro Petruzzelli 6



Agenda della Lezione

1. Introduzione e Naïve RAG

Limiti degli LLM

Workflow & Indexing Deep Dive

2. Chunking, Embeddings e Vector Databases

3. Valutazione e Strategie
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Agenda della Lezione

1. Introduzione e Naïve RAG

2. Chunking, Embeddings e Vector Databases

Strategie di Chunking Avanzate

Sparse (BM25) vs Dense (BERT)

Bi-Encoders vs Cross-Encoders

Tassonomia Vector DB & Algoritmi (HNSW)

3. Valutazione e Strategie
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Agenda della Lezione

1. Introduzione e Naïve RAG

2. Chunking, Embeddings e Vector Databases

3. Valutazione e Strategie

Metriche di Retrieval (Recall@K, MRR)

Framework RAGAS

RAG vs Fine-tuning
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Modulo 1

Introduzione e Architettura Naïve RAG
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Conoscenza
"Cristallizzata"

Un LLM possiede una vasta conoscenza,

ma questa è limitata al momento del suo
training.
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Conoscenza
"Cristallizzata"

Un LLM possiede una vasta conoscenza,

ma questa è limitata al momento del suo
training.

Conoscenza Parametrica:
È la conoscenza interna del

modello, immagazzinata nei suoi
pesi.

È statica e difficile da aggiornare.
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Conoscenza
"Cristallizzata"

Un LLM possiede una vasta conoscenza,

ma questa è limitata al momento del suo
training.

Conoscenza Parametrica

Limitazioni:
Training cut-off.

Costo elevato per il re-training
continuo.
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Il "Gap" della Conoscenza Aziendale

Un LLM (es. GPT-4 base) è un genio con cultura generale, ma un incompetente con i dati
aziendali o proprietari.

Cosa sa: Storia, Coding, Letteratura, Grammatica.

Cosa NON sa:
"Quanto abbiamo fatturato ieri?"

"Cosa dice la policy HR aggiornata?"

"Dettagli del progetto Top-Secret X".

Risultato: In azienda, un LLM senza dati proprietari è spesso inutile o pericoloso.
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Il Problema degli LLM: Allucinazioni

Le allucinazioni sono un difetto intrinseco della natura probabilistica degli LLM.

Generazione Probabilistica:

Il modello predice il prossimo token basandosi su probabilità statistiche.

Favorisce risposte plausibili "grammaticalmente" piuttosto che "fattualmente".
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Il Problema degli LLM:
Allucinazioni

Perché avvengono le allucinazioni?

Mancanza di fonti: Il modello inventa fatti
per colmare lacune.

Overfitting/Bias: Pattern ripetuti nel training
set possono forzare risposte errate.

Temperature: Alta "creatività" aumenta il

rischio di errori fattuali.
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Soluzione: Retrieval-Augmented Generation
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Retrieval-Augmented
Generation

Il RAG unisce la potenza linguistica dell'LLM con

una base di conoscenza esterna.

Memoria Parametrica: L'LLM.

Memoria Non-Parametrica: Vector DB.
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Workflow Naïve RAG:
Panoramica

Analizziamo i tre pilastri fondamentali.
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Workflow Naïve RAG:
Panoramica

Analizziamo i tre pilastri fondamentali.

1. Indexing: Preparazione dei dati.
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Workflow Naïve RAG:
Panoramica

Analizziamo i tre pilastri fondamentali.

1. Indexing: Preparazione dei dati.

2. Retrieval: Recupero informazioni.
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Workflow Naïve RAG:
Panoramica

Analizziamo i tre pilastri fondamentali.

1. Indexing: Preparazione dei dati.

2. Retrieval: Recupero informazioni.

3. Generation: Sintesi della risposta.
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Pilastro 1: Indexing

Prima di poter cercare, dobbiamo costruire il nostro indice.

1. Load: Caricamento dati da sorgenti eterogenee.

2. Clean: Rimozione rumore.

3. Split (Chunking): Suddivisione in unità logiche.

4. Embed: Conversione in vettori.

5. Store: Salvataggio nel DB.
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Pilastro 2: Retrieval

La Query dell'utente viene

convertita in un vettore (stesso
modello di embedding).
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Pilastro 2: Retrieval

La Query dell'utente viene
convertita in un vettore (stesso

modello di embedding).

Similarity Search: Confronto
matematico (es. Cosine Similarity)

tra vettore query e vettori
documenti.

Master GenAI - Accesso a conoscenza esterna tramite RAG

Alessandro Petruzzelli 25



Pilastro 2: Retrieval

La Query dell'utente viene
convertita in un vettore (stesso

modello di embedding).

Similarity Search: Confronto

matematico (es. Cosine Similarity)
tra vettore query e vettori

documenti.

Top-K: Selezione dei K chunk più
simili.
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Pilastro 3: Generation

Sintetizzare la risposta.

Context Injection: I chunk

recuperati vengono inseriti nel
Prompt.

Risposta: L'LLM genera la
risposta basandosi sui fatti forniti.
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Visualizzazione Matematica

Come cambia la generazione?

LLM Standard:

Probabilità della risposta  data la domanda .

RAG:

Probabilità della risposta  data la domanda  E il contesto .
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Modulo 2

Il Cuore Tecnico: Chunking, Embeddings e Vector Databases
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Deep Dive: Strategie di Chunking

Perché è importante?

Il chunking non è banale "taglio del testo".
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Deep Dive: Strategie di Chunking

Perché è importante?

Troppo Corto:
Perdo contesto. Una frase senza il paragrafo precedente potrebbe non avere

senso.

Troppo Lungo:

Rumore per l'LLM (troppe info inutili nel prompt).
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Deep Dive: Strategie di Chunking

1. Fixed-Size Chunking

La strategia più semplice. Taglio ogni  token.

Parametri:

chunk_size : Es. 500 token.

Pro: Facile, veloce.

Contro: Spezza concetti a metà (es. taglia una frase o una tabella).
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Deep Dive: Strategie di Chunking

1. Fixed-Size Chunking
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1. Fixed-Size Chunking con Overlap

chunk_overlap : Es. 50 token (per mantenere continuità alle frontiere).

Master GenAI - Accesso a conoscenza esterna tramite RAG

Alessandro Petruzzelli 34



Deep Dive: Strategie di Chunking

2. Recursive Character Chunking

Un approccio più intelligente che rispetta la sintassi.

Prova a tagliare su separatori logici in ordine di priorità:
i. Paragrafo ( \n )

I chunk vengono uniti fino a un certo numero di token.

Risultato: I paragrafi tendono a rimanere interi. Preserva meglio il contesto semantico
base.
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Deep Dive: Strategie di Chunking

3. Hierarchical

Sfrutta la struttura del documento.

Se il documento è Markdown/HTML/Latex, usiamo gli Header ( # , ## ) come confini.

Metadati: Ogni chunk eredita il titolo della sezione in cui si trova.

Esempio: Un chunk che parla di "Prezzi" eredita Section: Tariffe 2024 .

Pro: Ottimo per RAG su documentazione tecnica.
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Deep Dive: Strategie di Chunking

4. Semantic Chunking

Il metodo più avanzato. Non taglia su regole fisse, ma sul significato.

1. Calcola l'embedding per ogni frase.

2. Confronta la similarità tra frasi consecutive.

3. Se la similarità crolla (cambio di argomento), crea un nuovo chunk.
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Deep Dive: Strategie di
Chunking

4. Semantic Chunking

Il metodo più avanzato. Non taglia su
regole fisse, ma sul significato.

Pro: I chunk sono topic-coesi.

Contro: Lento e costoso (richiede

inferenza per ogni frase).
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Embed them all
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Cosa sono gli
Embeddings?

Non possiamo calcolare la similarità tra
stringhe di testo grezze in modo

efficace. Dobbiamo trasformarle in
numeri.

Input: "Il gatto è sul divano"

Output: [0.12, -0.98, 0.45, 
...]
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Sparse Vectors (Keyword-based)

L'approccio classico (es. TF-IDF, BM25).

Il vettore ha la dimensione del vocabolario (es. 50.000 parole).

La maggior parte dei valori è 0  (sparse).

Se una parola c'è, il valore è > 0.
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Deep Dive: BM25 (Best Matching 25)

L'evoluzione del TF-IDF. È lo standard de-facto per la ricerca a parole chiave.

Term Frequency (TF): Quanto spesso appare la parola nel documento?

Inverse Document Frequency (IDF): La parola è rara in tutti i documenti?

Field Length: Il documento è breve? (Se la parola appare in un tweet, vale più che in

un libro).
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Limiti del BM25

BM25 è potente, ma ha dei limiti strutturali:

1. Vocabulary Mismatch: Se query e documento non condividono le esatte parole, il
match fallisce (es. "PC" vs "Computer").

2. Polisemia: Non distingue i significati multipli di una parola (es. "Fiera" campionaria vs

"Fiera" bestia).

3. Nessun Contesto: Tratta le parole come sacchi di termini indipendenti (Bag-of-

Words), ignorando la sintassi.

Soluzione: Passare ai Dense Vectors che catturano il significato.
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Tipologie di Rappresentazione

Dense Vectors (Semantic)

L'approccio moderno (BERT, OpenAI Ada).

Cattura il significato, non solo la sintassi.

Analogy: Riusciamo a fare matematica con i

concetti.
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Problema Tecnico: Anisotropia (Rogue Dimensions)

I vettori densi non sono perfetti. Soffrono di Anisotropia.

I vettori tendono a raggrupparsi in uno stretto cono dello spazio, rendendo la Cosine

Similarity artificialmente alta per tutti.

Causa: Alcune dimensioni hanno valori molto alti e dominano il calcolo.

Correlazione: Spesso queste dimensioni tracciano la frequenza delle parole o la

punteggiatura, non il significato.

Fix: Normalizzazione (Z-Score) o post-processing.
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Come si addestrano gli Embeddings?

Contrastive Learning

Non usiamo "etichette" classiche. Usiamo coppie di frasi.

Dataset (es. MultiNLI):

Coppia Positiva (Entailment): "Il gatto dorme"  "Il felino riposa".

Coppia Negativa (Contradiction): "Il gatto dorme"  "Il cane corre".

Obiettivo: Avvicinare i vettori positivi, allontanare i negativi.
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Bi-Encoder (Retrieval)

Il cavallo da lavoro.

1. Indicizzazione: Calcolo tutti i vettori dei doc offline.

2. Query Time: Calcolo solo vettore query.

3. Similarity: Dot-product istantaneo su milioni di vettori.

Master GenAI - Accesso a conoscenza esterna tramite RAG

Alessandro Petruzzelli 47



Cross-Encoder (Re-ranking)

Il cecchino.

Non crea vettori separati.

Prende [Query] + [Documento]  e li processa

insieme strato per strato (Cross-Attention).

Vantaggio: Capisce sfumature impossibili per il Bi-

Encoder.

Svantaggio: Lento. Non pre-calcolabile.
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Performance vs Latency

Il compromesso ideale: Pipeline a due
stadi.

1. Retrieval: Bi-Encoder recupera
top-100 candidati (ms).

2. Reranking: Cross-Encoder

riordina i top-100 (sec).
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Come si addestrano gli Embeddings?

Loss Functions

Come calcoliamo l'errore durante il training?

1. Cosine Similarity Loss:

Semplice. Minimizza la distanza coseno per coppie positive (target=1) e
massimizza per negative (target=0).
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Come si addestrano gli Embeddings?

Loss Functions

Come calcoliamo l'errore durante il training?

1. Cosine Similarity Loss

2. Multiple Negatives Ranking Loss (InfoNCE):

Più potente. Per ogni coppia positiva , considera tutte le altre frasi nel batch
come negative.

Massimizza la probabilità di scegliere  dato  tra  opzioni.
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Scegliere l'Embedder:
MTEB Leaderboard

Non tutti i modelli sono uguali.

Metriche da guardare:

Retrieval: Quanto è bravo a
trovare documenti?

Clustering: Quanto

raggruppa bene concetti
simili?
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Scegliere l'Embedder:
MTEB Leaderboard

Non tutti i modelli sono uguali.

Trade-off:
Modelli grandi  Lenti ma

precisi.

Modelli piccoli  Veloci.

Master GenAI - Accesso a conoscenza esterna tramite RAG

Alessandro Petruzzelli 53



Matryoshka Representation
Learning (MRL)

Possiamo troncare i vettori senza ri-
addestrare? Sì.

I modelli MRL sono addestrati per
mettere le informazioni più

importanti all'inizio del vettore.
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Vector Databases: Panoramica

Dove salviamo questi milioni di vettori?
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Tassonomia Vector DB

Non esiste "un solo tipo" di Vector DB.

1. SQL Extensions (Es. pgvector):

Aggiungono colonne vettoriali a DB esistenti (Postgres). Ottimo per non
aggiungere infrastruttura.
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Tassonomia Vector DB

Non esiste "un solo tipo" di Vector DB.

1. SQL Extensions (Es. pgvector)

2. Vector Libraries (Es. FAISS, ScaNN):

Leggere, girano in-memory nel tuo codice Python.

Nessuna gestione persistenza/replica (No CRUD). Tu devi salvare l'indice su

disco.
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Tassonomia Vector DB

Non esiste "un solo tipo" di Vector DB.

1. SQL Extensions (Es. pgvector)

2. Vector Libraries (Es. FAISS, ScaNN)

3. Vector-Native DB (Es. Pinecone, Weaviate, Qdrant):
Database completi con CRUD, Replica, Sharding, Cloud Management.
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Decision Framework: Criteri di Scelta del DB

Non esiste il "miglior" DB, ma quello giusto per il progetto (Open Source vs Proprietario).

1. Maturità: Il sistema è stabile e supportato?

2. Component Integration: Si integra col mio stack (es. LangChain, LlamaIndex)?

3. Compliance: Supporta RBAC (Role-Based Access Control) per la privacy dei dati?
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Deep Dive: Performance (Insertion vs Query)

Due metriche spesso in conflitto:

1. Insertion Speed (Write):
Cruciale per Real-time ingestion.

Tecniche: Batch Processing, Parallelization, Sharding.
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Deep Dive: Performance (Insertion vs Query)

Due metriche spesso in conflitto:

1. Insertion Speed (Write):
Cruciale per Real-time ingestion.

2. Query Speed (Read):

Cruciale per la User Experience (bassa latenza).

Tecniche: Caching, Index Structures efficienti.

Se il sistema è "Write-Heavy" (dati cambiano sempre), evitate DB lenti in
indicizzazione.
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Indexing Algorithms

Flat vs ANN

Flat Index (Exact Search):

Confronta la query con tutti i vettori.

Precisione: 100%. Lentezza: .

Usabile solo per dataset piccoli (<100k).

ANN (Approximate Nearest Neighbor):
Accetta di sbagliare l'1% delle volte per essere 100x più veloce.

Algoritmi: IVF, HNSW, DiskANN.
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Deep Dive: HNSW (Hierarchical
Navigable Small World)

Immagina un grafo a più livelli.

Livello Alto (Autostrade): Pochi nodi,

collegamenti lunghi. Ti sposti rapidamente nella
"zona giusta" dello spazio vettoriale.

Livelli Bassi (Strade Locali): Molti nodi,
collegamenti corti. Raffini la ricerca per trovare il

punto esatto.
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Modulo 3

Valutazione e Confronto Strategico
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Perché Valutare un RAG è difficile?

Non esiste una "risposta giusta" unica come nella classificazione (Sì/No).

Il sistema ha due punti di fallimento indipendenti:

1. Retrieval Failure: Il DB non mi ha dato i documenti giusti.

2. Generation Failure: Il DB ha dato i documenti giusti, ma l'LLM ha sbagliato a

leggere/rispondere.
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Metriche di Retrieval

Recall@K

"Tra i primi K risultati (es. 5), c'è il documento che contiene la risposta?"

Se la risposta è nel doc #1 -> Ottimo.

Se la risposta è nel doc #5 -> Bene.

Se la risposta è nel doc #6 (e io ne passo solo 5 all'LLM) -> Fallimento. Il sistema
RAG non potrà mai rispondere.
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Metriche di Retrieval

MRR (Mean Reciprocal Rank)

Premia i sistemi che mettono il documento giusto in alto.

Doc in posizione 1  Score 1.0

Doc in posizione 2  Score 0.5

Doc in posizione 3  Score 0.33
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Metriche di Retrieval

Precision & MAP

Precision: Di 5 documenti recuperati, quanti sono "utili"? (Spesso in RAG ce ne basta

1, ma averne 4 di rumore può confondere l'LLM).

MAP (Mean Average Precision): Una media robusta della precisione su diverse
query.
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Metriche di Generation: LLM-as-a-Judge

Usiamo GPT-4 per dare un voto a GPT-3.5 (o Llama).

Framework standard: RAGAS.

Scompone la valutazione in tre assi:

1. Faithfulness

2. Answer Relevance

3. Context Precision
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RAGAS Deep Dive

1. Faithfulness (Groundedness)

Obiettivo Check: Hallucination.

L'LLM Giudice estrae le "affermazioni" (claims) dalla risposta generata.

Verifica: "Ogni affermazione è supportata dal contesto recuperato?"

Se la risposta contiene info vere ma non presenti nel contesto  Bassa Faithfulness
(perché in RAG vogliamo che usi solo il contesto).
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RAGAS Deep Dive

2. Answer Relevance

Obiettivo Check: Utilità.

L'LLM Giudice genera delle "domande artificiali" basandosi sulla risposta data.

Verifica: "La domanda originale è simile a queste domande artificiali?"

Penalizza risposte che divagano o non rispondono al punto, anche se vere.
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RAGAS Deep Dive

3. Context Precision

Obiettivo Check: Qualità del Retrieval (visto lato LLM).

Verifica se i "pezzi utili" del contesto sono in alto o sepolti in fondo al noise.

Fondamentale per il "Lost in the Middle" phenomenon (gli LLM tendono a ignorare info
a metà del contesto).
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RAG vs Fine-tuning: Il Grande Dibattito

Spesso visti come alternativi, in realtà sono complementari.
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RAG: I Punti di Forza

Dinamicità: Aggiorno un file nel DB e il modello lo "sa" istantaneamente.

Trasparenza: Posso dire "L'ho letto nel documento X, pag 4".

Economia: Niente GPU training farm, solo inferenza.

Privacy: Posso avere diversi indici per diversi utenti (ACL).
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Fine-tuning: I Punti di Forza

Forma e Stile: Insegnare al modello a parlare come un medico, un legale, o a
rispondere in JSON.

Linguaggio Settoriale: Se uso termini iperspecifici (gergo aziendale) che l'LLM base
non conosce, il Fine-tuning aiuta a "imparare la lingua".

Latenza: Elimina il tempo di "Retrieval". Risposta diretta.
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Matrice Decisionale

Scenario Soluzione Consigliata

Necessità di conoscenza aggiornata (News, Stock) RAG

Necessità di formato specifico (Code, Medical Report) Fine-tuning

Dominio di conoscenza totalmente oscuro all'LLM RAG + Fine-tuning

Riduzione Allucinazioni Fattuali RAG
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L'Approccio Ibrido: RAG + Fine-tuning

La frontiera avanzata.

1. Fine-tune Embedder: Addestro il modello di embedding sui MIEI dati per migliorare il

retrieval.

2. Fine-tune LLM: Addestro l'LLM a essere un bravo "lettore di contesto" (ignorare il
rumore, sintetizzare meglio).

3. RAG Runtime: Uso questi modelli custom nel flow RAG classico.
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Grazie per l'attenzione!

Q&A
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